
AUTOMATIC VERIFICATION OF SESIALIZERS.(U)
MAR 80 R A ATKINSON N00OIN-75-C-066I

UNCLASSIFIFO MIT/LCS/TR-229
M

; zhufffufuluu
1'3

rmimmEEE0 mmnEEE
EI/IIIE//EI/I
llllEElhlllllE
EEEEIIEEEEI-I
IEEIIIIIIIIEElllhlI f

II ==ILJ'-

1 111125 '. .

4

MICROCOPY RESOLUTION TEST CHkAT

NATIONAL BUREAU Of STANDARDS-1%3-1'

A~@SS 0*R 2 21):

4 .r

xS

- - ~AUTOMATI VRjIa:,C,

SECURITY CLASSIFICATION OF THIS PAGE (Ihen Dmle ntered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
2REPORT MU-L--__ 2. GOVT ACCESSION NO 2. RECIpfEMTC CATALOG BMilE

1- MT/S/-229i / -,

!Automatic Verification of Serializers Ph.D. Thesis, March 1980
S. PERFORMING ORO. REPORT NUMBER

__ MIT/LCS/rR-229
7. AUTHOR(&) S. CONTRACT OR GRANT NUMBER(s)

Russell IRogeiAtinson N0001l4-75-C-066l)4 '-+ICS 74-21892rigj-
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

MIT/Laboratory for Cauputer Scec AREA & WORK UNIT NUMBERS

545 71echrology Square
Carrbridge, MA 02139

II. O FIE N A4p ADOE

AoDepartment of Defense/ Dirtr/ffice Ctip, M"so
1400 Wi.lon Bulevad activities 1i. NUMBER OF PAGES.Arlington, VA 22209 /Washingtan, D. C.2055 205 = J .i

I*. MONITORING AGENCY NAME & ADDRESSIf different frou Controlling Office) IS. SECURITY CLASS. (of th to r 6p-

ONR/Department of the Navy Unclassified
Information Systems Program
Arlington, VA 22217 ,S.. DECLASSIFICATION/ DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of thl Report)

T.is docuurmt has been approved for public release and sale;
its distribution is unlimited

17. DISTRIBUTION STATEMENT (of . abstract enteredin Block 2. S diffrent from Report)

Ill. SUPPLEMENTARY NOTES

19. KEY WORDS (Conthinue on reverse side if necessay nd Identify by block number)

verification
* concurrency

mnitors
serializers

.STRAC ong ue on reverse side It necessary end identify by block nmber)
This thesis is concerned with the problem of controlling concurrent access to
shared data. A language construct is proposed to enforce such control; a
control; and verification techniques are given to prove that instances of the

construct satisfy their specifications. The techniques are justified in term
of the definition of the construct and the definition of the specification
language. Results are given for a program that impleients a number of the
techniques, illustrated by verifying several versions of the readers-writers

DO I 1473 EDITION Of I NOV6S IS OBSOLETE
)CSECURITY CLASS Ir DO

R
THIS efs ettaled)

M i ' -4 i

aR.,.YCi AMPICATION Or THIS IPA09 D*SWO___________

20., - jem ineratics btwen istacesof the onstruct are discussed
in the context of a sinple file sYstml.

SEUIYCAPCTO F HS10(b W M0

f Automatic Verification of Serializers

Russell Roger Atkinson

Copyright Massachusetts Institute of Technology 1980

March 1980

This research was supported in part by the Advanced Research Projects Agency of the
Department of Defense, monitored by the Office of Naval Research tinder contract
N00014-75-C-0661, and in part by the National Science Foundation tinder grant
MCS 74-21892 A01.

Massachusetis Institute of(Technology
Laboratory for Computer Science

Cambridge Massachusetts 02139

,I

] Automatic Verification of Serializers

Russell Roger Atkinson

Abstract

This thesis is concerned with the problem of controlling concurrent access to shared
data. A language construct is proposed to enforce such control; a specification language
is defined to describe the formal requirements of such control; and verification
techniques are given to prove that instances of the construct satisfy their specifications.
The techniques arc justified in terms of the definition of the construct and the
definition of the specification language. Results are given for a program that
implements a number of the techniques, illustrated by verifying several versions of the
readers-writers problem. Interactions between instances of the construct are discussed
in the context of a simple file system.

Thesis Supervisor: Barbara H. Liskov

Title: Associate Professor of Electrical Engineering and Computer Science

Keywords: verification, concurrency, monitors, scrializers, specification .-. Sion For

DI-'C. TAB
Unam uIiccd
Justification

By_

j~'r i ' i

, r .. Codes
Avail aiid/or-2- Dist special

r1

Acknowledgements

1 I would like to especially thank my advisor, Professor Barbara Liskov, for her
help and encouragement during the past six and a half years of graduate study, and in
particuilar for her work in Supervising this thesis.

.1 My readers, Professor John Guttag and Professor Carl Hewitt, also deserve
much credit. John is largely responsible for whatever respectability the mathematics in

I this thesis may contain (the omissions are, of course, my own). Carl is responsible for
the basic theme of this research. Hie proved to be an excellent listener during my first
tentative steps toward a topic.

Deepak Kap~ir and Craig Schaffert deserve credit for many useful suggestions
during the course of this work.

I The verification program described in this thesis is the descendent of the
earliest work that I performed in this area. I especially credit Barbara Liskov, the CLU

* programming language, and the LCS computing facilities for providing fertile ground
for this research. My thanks, also, to the people who were dragged over to watch the
program work (or fail to work).

I chose to use "we" rather than "I" in the remainder of this thesis in part to
recognize that most of the ideas in this thesis are a result of effort by many people in the
Computer Science community at large. My apologies to those who might consider their
ideas misrepresented: my thanks to those who contributed.

-3-

S4

CONTENTS

1. Introduction ... 8

1.1 Initial decisions ... 9
1.2 Modularity ... 11
1.3 Related work... 13
1.4 Plan of thesis... 17

2. Serializers.. 20

2.1 Serializer design issues.. 21
2.2 Serializer syntax and mechanism...................................... 24
2.3 An example: the readers-writers problem............................ 28
2.4 Simple serializers.. 31
2.5 Using semaphores to implement sei ;alizers 32
2.6 A comparison of serializers with monitors 37
2.7 Opportunities for optimization.. 41

3. Semantic Model .. 43

3.1 Overview of serializer semantics....................................... 44
3.2 Nodes... 46
3.3 Events .. 50
3.4 Transactions ... 51
3.5 Histories ... 53
3.6 [Definitions... 55
3.7 Serializer I nduction ... 69
3.8 Comments on enter and leave events 74
3.9 Mess~rge passing semantics... 75
3.10 Infinite histories revisited... 78

.4-

r _-- , - ,-..

8. Conclusions 179

8.1 Verification of serializer extensions .. 180

8.2 Closing rem arks .. 187

Bibliography 189

Appendix 1. Bounded buffer serializer .. 195

Appendix 11. Combined bounded buffer serializer 198

Appendix 111. Disk head scheduler-...................... 1.9.............. 9

Appendix IV. Table of definitions ... 201

.6-

I --- lr II --- l'- - " "-

I. Introduction

This thesis is concerned with the problem of controlling concurrent access to

shared resources. In systems where several processes may attempt to concurrently

I access the same resource, there is a need to impose some order on those accesses. If

certain orders are not enforced, certain classes of access to the resource may conflict and

cause erroneous results. Other classes of access to the same resource may proceed

concurrently without conflict. This is true whether the resource is a data base, a printer

spooler, a file system, or a communications network, although the definition of the

classes of access may be speci tic to the resource.

Given this fainmework, we can informally define a few terms. Two accesses are

concurrent iF both accesses have started, yet neither has completed. Typically,

concurrent access is controlled through exclusion, where a process executing one class

of access prevents the initiation of another access rrom any of a set of classes. When

one access excludes another, the latter must wait for the former to complete. If one

access is waiting Ibr another, which is waiting for the first to complete, then no progress

can be made on either, which is called deadlock. If two processes are ready to initiate

accesses, yet one access excludes [he other, then the process that proceeds is said to have

priorily over the other. A process that is ready to proceed, yet is continually denied

progress, sU tiers from starvation.

We wish to ensure that programs executing concurrently on shared resources

obtain correct results, where correctness is defined in terms or programs meeting their

Specifications. We wish to show, for properly designed progranis, that certain accesses

-8-

*.~. .j '~j *i I

* Ie design of a program to make use or this methodology and perform
veri Iication.

One of the contributions of this thesis is that all of these elements are presented

together for a single construct.

Our approach to concurrency control is heavily influenced by by the nonitor

construct of [Brinch Hansen 72] and [Hoare 74], and the programming languages CLU

[Liskov et. al. 77, Liskov 79a] and Alphard [Wulf 781, which in turn owe much to Simula

[[)ahl 72]. In these languages, access to data objects is achieved through a limited set of

operations, which are generally implemented as procedures. Just as CLU and Alphard

separate implementation details from the abstract appearance of data objects, our

objective is to separate concurrency control firom access to data objects. Iie monitor

construct has a similar goal, although a slightly different view or data. The connecton

between concurrency control and data abstraction is a key issue in defining our

construct and in our verification techniques.

Verification does not prove that programs operate correctly, in the sense that a

verified program performs exactly as desired. There is often no reason to believe that

the specilications are better than the program text fbr describing the desired behavior

for the program. Verilication pe'fornis the task of' taking two different descriptions of a

problen solution and showing that (he descriptions agree, in tle sense that every

behavior that the program exhibits is allowed by the specifications. The two

descriptions are quite dili'ent in kind: the code is an algorithmic description, and the

specifications describe the effects ofexeccuting tie code. 'llw confirmation of arriving at

-10-

't 9t

We propose to make use of the following kinds of modularity:

Data absiraction is the organization of data into distinct objects, where
each object belongs to a distinct data type, and direct access to the objects

ofany type is limited to the operations of the type. This definition ofldata
abstraction follows the lead of the CLU programming hmguage.

cConcurrency control is separated from data access. The implementation
of concurrency control is kept distinct rom the implementation of data
access, altho the external interface of the two implementations may be
similar.

Specifications ofconcuirrency control are separated from specifications of
other properties of a programn. Further, these specifications are meant to
be independent of any implementation.

*Verification of concurrency control is separated from other program

verification techniques. In particular, the verification of access to a
resource and the verification of the concurrency control for such access
tre independent, although each may assume the specifications of the
other (we will assume an absence of circularity, since it is a separable
isstue).

It is possible to find fault with modularity, since the kinds of separation we

have described may make it more difficult to acheive olher desirable properties.

* !11e principle of modularity can be misapplied: he wrong kind of
separation prevents necessary data froin being coniltinicated firom one
place to another. We hope to show through the use of examples Ihat the
kinds of modularity we propose to use do not prohibit necessary
information from being in the appropriate places.

-12-

* Modularity can be ineflicient: tile mechanism for transferring from one
context to another, as in a procedure call or process switch, can be
expensive. Further, by limiting access to certain data, certain
computations may be redundant. We will not address this issue directly
in this thesis, but will return to this objection in our conclusions.

1.3 Related work

Much of the initial work on the construct we propose was done in conjunction

with Carl Hewitt [Hewitt and Atkinson 79]. Since then, there has been a divergence in

our efforts: this thesis explores issues of automatic verification of concurrency control,

while Hewitt has concentrated on more primitive control of concurrency in a context

where programs communicate by passing messages. Some of this work can be found in

[Hewitt, Attardi, and Lieberman 79].

Below we britelly discuss related work on language constructs, concurrency

specifications, semantic models, and some differences in our approach from other work.

1.3.1 Related language constructs

Most authors in this area note the importance of limiting the interactions

between concurrent processes through the use of language constructs specifical",

designed for this purpose. We have a similar approach in this thesis, with the addition

that we attelpt to relate concurrency control to abstract (iuser-delied) data types.

.1 -13-

$ i~ I ~~ S F

We have already noted tile intellectual debt owed to the monitors of Brinch

Hansen and Hoare. For now, we characterize the monitor approach by noting that

concurrency is controlled by only allowing one process at a time to execute an operation

that belongs to a monitor. Given that initial exclusion, further execution orders may be

imposed by the monitor operations. We will present a more detailed comparison of our

construct with monitors in Chapter 2.

Another line of thought in concurrency control is to limit parallel processes to

communicating through the passing of' messages. Various authors have proposed such

an approach, among them [Good, Cohen and Keeton-Williams 79, Hoare 78,

Feldman 791. Concurrent actions only proceed when a process that is sent a message

chooses to receive it. Exclusion for a class of access derives from a refusal to accept a

niessage of h:t class. This approach is particularly well suited to distributed systems,

where diferent processes may reside on widely separated processors.

'llese two approaches are not as dilftrent as they might initially appear.

AIlhough our presentation will follow the irst approach, we will argue in this thesis that

our techniques are valid for the second approach as well.

-14-

~ ~ .' L

1.3.2 Concurrency specifications

Our work on specifications is strongly influenced by Greif [Greif751. In this

approach, certain events related to an access are identified: access request, access start,

and access finish. Specilications are given by indicating which orders of these events

are required. For example, suppose that the execution of one kind of access (call it X)

prevents another kind of access (call it Y) from starting. We can specify this

requirement by stating that no Y access start event can occur between any X access start

event and the corresponding X access finish event.

A similar approach to specifications appears in [Laventhal 78], in which such

speci fications are used to synthesize implementations to realize concurrency control.

1.3.3 Related semantic models

Various models have been used to describe concurrent execution of programs.

In the iodels we discuss here, a program proceeds friom state to state by atomic actions.

* In [Howard 76, Good, Cohen and Kccton-Williams 791, and in our work,

actions that lake place are recorded in sequenccs called hislories, and
Iprogram scmanlics arc dcscribcd by giving prcdicatcs that lust be
salisficd Ibr histories.

* In [Grif751, actions are related by partial orders called behaviors.
IVrogran behavior is given by prcdicatcs on these partial orders.

-15-

* In temporal logic (a survey-level explanation of this model appears in

[I.amport 801) the model uses sequences of states, rather than actions.
Predicates that describe program behavior may be applied to sequences
of states, for a linear lime theory, or to all sequences of states with a
common sequence of states as a prefix, for a branching lime theory.

* Another related model, based on trees of states, is presented in

[Owicki 75]. Given an initial state and a program, the behavior of the
program is characterized by a tree of states, where the arcs represent
execution of an action that leads to the next state.

All of the above models use some structure to relate either states or actions, and

describe program behavior by giving predicates on such structures.

It is possible to discuss states in terms of equivalence classes of histories (or

behaviors). For example:

rTherel is a correspondence between states and behavior that allows one to
define the states of a system as an equivalence relation over the possible
behaviors. [Greif 75, p. 72]

We believe it better to think or predicates on histories rather than to attempt to regard

states as equivalence classes. The distinction lies in our concern with certain properties

of ohjects at any parhicular time, rather than the entire state of the object.

-16-

'I ,, ,

1.3.4 Differences in our work

We approach concurrency control not just by defining a language construct,

I but also by providing specification and verification methods for the construct. Further,

these methods are actually demonstrated in a simple automatic verifier. By providing a

wide range of support for a relatively narrow construct we hope to illustrate the benefits

of a unified approach to controlling concurrent access io resources.

We have attempted a greater use of modularity than is commonly found in

* other works. In particular, we couple control of concurrent access to the principles of

* data abstraction with strong typing, while maintaining separation of concurrency

control specification and verilication from data access specification and verification.

1.4 Plan of thesis

Chapter 2 introduces the serializer language construct, which is a method Ibr

controlling concurrent access. An informal presentation is made of the syntax and

semantics of the construct. An example, based on tie readers-wrilers problem, is

disc(i;scd in detail. A simplification of the serializer coinstruct is defined lir use in later

chaptcrs. A translation oflserializers into clusters and semaphores is given as a possible

implementation strategy.

Chapter 3 presents a simple semantic model that supl)rts concurrency, and

uses it to define more precisely the simplified scrializer construct. A definition

I language based on lirst-ordcr predicate calculus is used to decribe serializcrs as

-17-

I i

enforcing limitations on the execution order of programs.

Chapter 4 discusses the four kinds of concurrency control specifications used

in this thesis. A simple specification language for concurrency control is defined.

Specifications are given for the readers-writers problem, with several variations, and the

bounded buffer problem.

Chapter 5 presents and justifies rules that are used to verify that serializers

meet their specifications. Although the definition of serializer semantics and the

definition of the specification language are sufficient to allow us to verify serializers, it

would be difficult to write an automatic verifier that directly uses these definitions.

Therefore we define and prove a number of inference rules that allow LIS to infer

specification clauses given the assumption (or prool) of other specification clauses,. An

example is given of how the rules allow verification in a simple mechanical Fashion.

Chapter 6 describes a program that uses the verification rules to establish Ihat4 a scrializer meets its specifications. We first describe how the structure of the program

incorporates the verification rules, and then present examples of proofs that the

program has performed.

Chapter 7 discusses issues related to interaction of seriali/ers, and premnts an

extended example of serializer usage: a simple hierarchical tiling system. Guidelines

are given for providing scrializers ibr data types that are originally used in a

singl-prncess environment.

-1$-

I Chapter 8 contains a discussion of how the work in the previous chapters can

he extended to cover more complex problems and more complex serializers.

Several examples of serializers are presented in the appendices, and are

referred to from time to time in the body of the thesis. The last appendix presents a

table showing where the various definitions and rules used in this thesis are defined.

- 19-

1 2. SeriaIlizers

'ihis chapter introduces the serializer construct, which is intended to provide a

miodular method of concurrent access to shared data objects. Related programming

language constructs are monitors [Brinch Hansen 72, Hoare 741, path expressions

[Campbell and Habermann 741, and communicating scquential processes [Hoare 781.

We treat the scrializer construct as an extension to the CLU programming

language [Liskov et. al. 77, 1tiskov 79a]. However, the basic ideas behind serializers go

beyond any particular programming language. Earlier versions of' the serializer

construct were presented in [Hewitt and Atkinson 771 and [Hewitt and Atkinson 791

1 using a significantly different language.

In (Lis chapter we describe the rationale for the design of thle serializer

construct, informally deline the syntax and semantics of seriatizers, and piresent an

example of a serializer. 1lien we describe the limited version of serializers tat we will

he using inl tile remlaining chapters, give a po~ssible implementation of .Verializers in

terms ofwsemaphores, and comipare the serializer and mon11itor constructs.

-20

2.1 Serializer design issues

We believe that a language construct for controlling concurrent access to

shared objects should have the following qualities:

The shared objects should be separated into identifiable sets of objects,
each set being a resource. A resource should also be treated as an object,
allowing resources to be composed from other resources. Each resource
can only be directly accessed through a set of operations associated with
the resource.

The construct should separate control of concurrency from the algorithms
that access the resource. This separation simplifies both the concurrency
control and the resource access. Some concurrency may be lost by
requiring complete separation, since it is likely to be difficult to partially
overlap operations. However, we believe that the added simplicity is well
worth the reduced concurrency.

To aid reliability and verifiability, the shared resource should not be
accessed except through an object that controls access to the resource.
The concurrency control construct should enforce this restriction, since
relying on programmers to follow conventions is not satisfactory.

* lo ease tile writing or programs that access resources, operations that

access the object controlling tile res)urce should appear to he. as nearly as
practical, tile Same as the operations that access% the resource. "hliat is, the
construct that controls concurrency should have the same appearance to
the user as the construct used for the resource.

-21-

.:V:0

Based on these criteria, we designed the serializer construct to have tile

lbllowing characteristics:

like the cluster construct of CLIU, the serializer construct is used to

define data types by defining a set of operations for each type. The
objects of a data type defined by the serializer construct are called
serializer objects. Fich scrializer object is used to control a separate
resource object. The operations of the data type are serializer operalions.
For the sake of modularity, serializer objects can only be accessed
through the appropriate serializer operations.

*"lhe execution of protected parts of a serializer operation Ibr a particular

serializer object precludes the simultaneous execution of protected pails
of any serializer operation oil the saren serializer object. h'le process
executing a protected part of an operation is said to have possession of the
serializer object.

During the execution of a seriallizer operation, possession of the serializer
object can be released and regained. It is particularly uscfil to release
possession while accessing the resource, thereby permitting concurrent
activity involving the serializer object. After the resource access,
possession is regained to indicate that the access is complete. 'Ibis
temporary release of possession permits external procedures to be
invoked fron a serializer operation while allowing other serializer
operations to continue.

Dturing the execution ofa serializer operation, it nay become necessary to
stuspend execution to wait Ibr sunic condition to become true. For
example, ifsonc operation needs exclusive access to the resource, it must
wait until no olher resource accesses are in progress.)uring this pause,
possession of the serializer object is released to allow other requests to
proceed concurrently as lir as they are able.

-22-

SI.

Figure 1. A picture of scriatizer object

+---

I Serializer objectI

--------------- +
Request -> (Pause) Request'-->II

Resource I

Reply <--7 (Pause) Reply' ---

--------------- 1

+---

A graphical description of how the serializer construct is used is shown in

Figure 1. A Request is the start of an operation, and a Reply its termination (possibly

passing back irformation). The intended effect of the serializer is to impose an ordering

on the requests and replies, ats they are transmitted between the resource and the

requesters. The (Pause) is optional, based on whether the resource access requested

can be performed immediately when the request enters the serializer. In most cases, a

serializer operation passes the iii lormation it receives rironi the caller to the

corresponding r"esotirce operation, andI pa.ses the informiation it receives firomn the

resource operation to (lie caller.

.23-

2.2 Serializer syntax and imechanism

This section gives a brief syntax for the serializer construct and the statements

used only by serializers. We also give an informal description of what each form is used

for and how it works.

The syntax used for a scrializer is similar to the syntax used for a CLU cluster.

llie header names the serializer and lists the externally available operations. Then the

representation type for the scrializer is given, which determines the names to be used

ror the components of the serializer object. 'lhen the operations are given as

procedures. The Porm of a serializer is:

name = serialize r is operationname_list

rep = represcnlaliontype

operation_namne = proc (formaLargumenis)
oplionaLreturntlist
optional exception_list

procedureJody
end operaioiiname

. other operations

end natne

We have used italics to informally indicate syntactic quantities.

As with clusters, the scrializer constrticl delines a new dat type, where the

type is denoted by nane. Certain of the operations are used to create new scrialiier

objects of the named type, while other operations ire used to access the serializer

objects. Operations named in the ' eratio ame.li.t are hle e xcrna/ly available

operations, and may be used by code outside of the serializer. Operations not named in

- 24-

1-~ 7 --

the operalionjiameJist may only be used internally. Starting the execution of any

externally available operation that directly uses the serializer object requires that the

executing process gain possession of the scrializer object (starting execution is shown as

Request in Figure 1). Termination of an operation that has possession releases

possession (termination is shown as Reply in Figure 1). To reduce the likelihood of

deadlock, an operation that has possession of a serializer object is prohibited from

directly calling another operation that requires possession of the same serializer object.1

We have also added two new kinds of statements that can only be used in a

serializer. ilie enquetic statement is used to suspend execution (and release possession)

until sonic condition is satisfied (shown as (Pause) in Figure 1). l he statement has the

form:

enqueue queuecexpression until booleanexpression

'llie queueexpression denotes a queue that is used to impose a first-in-first-out

discipline on processes waiting for conditions. 1The boolan-exprcssion denotes tile

condition that is required to be true before a process can continue execution. Such a

condition is called a guarantee. When a process is waiting for the condition to be true,

we say that the process is wailing in the queue, since sonc identification ol' the process

is stored in the queue. When a process waiting in a queue is allowed to proceed, it

regains possession of the %erializer object, the process identification is removed front the

quetc, and the enqueue statement terminates.

i. In practice, il may nol he poisihle It) detet when this mcurs. 'lis dtwoe, not alli'cl our objecliv.
which is to reduwce the chalnc. l" error,,. We d i not elievc hat it is possible Ior a language restriction to
completely eliminate ihi% kind oferror wilhou iinduly fliiciing [he expressive power or the language.

-25-

e' 1 'jAt

The queues used in serializers are first-in-first-out unless otherwise specilied: 2

If some process starts execution of an enqueue statement before another process starts

execution of an eiqueue statement for the same queue, the first process will complete

execution of the enqueue statement before tile second process, provided that either

statement terminates.

1The join statement is used to perform sonic body of statements that should be

executed while not in possession of the serializer object. The statement has the form:

join crowdjexpression
body-ofstaiements
end

A crowd expression denotes a set used to identify the processes that have started

executing a join statement but not completed it. There may be several such sets, called

crowds, so that different classes of access can be distinguished.3 The join statement

starts by placing some identification of tile executing process into the specified crowd

and releasing possesion (shown as Request' in Figure 1). After possession is released,

the bodYrof sialemenis is executed. Finally, possession is regained (shown as Reply' in

Figure 1), the process identification is removed froni the crowd, and execttion

continues after the end of the join statement. Typically, a join inside ol an operation is

perlbrmed io invoke tile corresponding operation of tile resource.

2. An example of ihe use 'prhority ~iqctics appears in Appendix 1.
3. Ihc joill s(awilllni is so called bi ctse the ip'.',s exectiting the statelienijOilns it crowd of similar

processes. I Inoi he conhised with Ilok and join Irimitives tused Io process creation and (cflimhf i)ll
other I anguages.

-26-

,-iA |A

A process attempting to start or continue execution of an operation on a

serialiZer object must wait until there is no other process that has possession of the

scrializer object. If the process is waiting for some condition to be satisfied, it does so in

an explicitly named queue of an enqueue statement. If the process is waiting to gain

possession at the start of an operation or at the end of a join statement, it does so in an

implicit queue called the external queue, which is serviced in first-in-first-out order.4

Possession of the serializer object is released at the start of an enqueue

statement (after the process is placed on the queue), the start of a join statement (after

the process is placed in the crowd), and at the end of an operation. Whenever

possession is released, the explicit serializer queues are examined to determine whether

any queue has a process at its head with a true guarantee. If any of the guarantees are

true, then one of those associated waiting proces':es will get possession of the serializer,

and be removed from its queue. Then the process can proceed with the execution of

the operation. In evaluating the guarantees, there is no assurance that the guarantees

will be evaluated in any particular order, or that they will all be evaluated unless all

evaluate to Rlise. li'all guarantees are fIlse, then the process on the external queue that

has waited (he longest (if any) is removed from the queue and gains possession.

4. We have clho.sn to ise a single external c ietie for simpticity o F xplana lim. U sing i single external
qIeue is a Valid implemeianllion . ilhotigl it is not the onv %Adl ia inplenation.

- 27 -

2.3 An example: Ihe rcaders-writers problem

The general readers-writers problem [Courtois, Heymans andParnas71J

presents a simple resource that is to be accessed by concurrent processes. There are two

operations on the resource, read and write. A process performing a read operation is

called a reader, while a process performing a write operation is called a writer. In

keeping with the serializer methodology, we have split the problem into writing a

cluster to implement the resource and constructing a serializer that encapsulates such a

resource. The basic constraint on concurrency is that readers should not access the

resource concurrently with writers, and writers should not access the resource

concurrently with other writers. The general readers-writers problem imposes no

further req uirement on the order of processing Ibr operations.

The example we present in Figure 2 has the requirement that if a read

operation on the serializer starts beibre a write operation on the serializer, the reader

will access the resource before that writer, and that this first-in-first-out (FIFO)

ordering is also imposed on writers with respect to readers, and on writers with respect

to other writers. This variant of the readers-writers problem is discussed in [rcif 751.

In the FIFO serializer, there are three operations, one to create a new

scrializer object (and new resource), one to read a value associated witlh a key in the

resource, one to write a value associated with a key in the resource. Only the seriali/er

opcralions that access the rcpresentalion (rep) ol a serializer object argument need to

-28-

I "'A

'1

Figure 2. FI FO serializer

% The following serializer is a first-in-first-out solution to the
% readers-writers problem.

FIFO = serializer is
create, % Create a new serialized resource object
read, % Read a value from the resource given a key
write % Write a value to the resource given a key

% Each serializer object has the following representation -

rep = record [rc: crowd, % readers' crowd

wc: crowd, % writers' crowd
xq: queue. % common queue
res: resource] % unserialized resource

create = proc () returns (cvt)
return (rep$(rc: crowd$create ().

wc: crowd$create {),
xq: queue$create (),
res: resource$create ())

end create

read = proc (x: cvt, k: key) returns (value)

I/ Wait until there are no active writers

enqueue x.xq until crowd$empty (x.wc)

% Become an active reader & perform the read

join x.rc
return (resource$read (x.res. k))
end

end read

write = proc (x: cvt, k: key, v: value)

% Wait until there are no active writers or readers

enqueue x.xq until crowdSempty (x.rc) & crowd$empty (x.wc)

Become an active writer & perform the write

join x.wc
resource$write (x.res, k, v)
end

end write

end FIFO

-29-

gain possession of the serializer object.5 Thie use of cvt as a type declaration foi-

arguments to operations indicates which argumellnts are serializer objects viewed as their

representations. T[he use of cvt follows the CLU Usage, in that it represents a type

*~con1version1 between abstract type and representation type that is perforined at the

interface of an operation. Each serializer operation is limlited to one Mv argument, since

there is no provision for gaining simultaneous possession of multiple serializer objects.

llure is no restriction onl the Lis'e of Mv used as a return type 6 (even if we allow mul.1tiple

serializer objects to be retUrned).

In the read operation of the FIFO serializer, the guarantee is

crowd$e'npty(x.wc). 'Therefore, no readers will begin to read from the resource Until

* there are no writers accessing the resoUrce. Similarly, in the write operation, the

guarantee is crowd$empty(x. rc) & crowdsempty(x.wmc), which prevents a writer From

proceeding until neither readers nor writers are accessing the resource.

The importance of having sole posse-ssion of the serializer object can be

illustrated by examining Figure 2 and considering the consequences of no, having such

a restriction. F-or example, if a writer did not have sole possession of the serializer

object after it perlbormed its eiiqueue, another writer could access thie resource beiween

the first writer's execution of tlie ciiquetie statement and the join statement, Th1is would

5. Th criea te oi)QraIfion doe's nlo(need lo gaini possession. since n liprimesses oither than (fie Iirtmcss
execuiling ilie create opeixilion cotild access ihic object.
6. Not1e ithai asan airgi inient i ye des.rip)io n. CVI reqiii res, a c m ers inl fromn abkii .ci (4 repr'SL'Il i11n

iy pe. antd asia ret i rn ' e demt..i 11)11. hle con ers in is I 1.11 i rep resemiatin io ,ihmraci (v pe.

-30 -

.30' 1i ~

allow simultaneous access to the resource by two writers, which violates our initial

req uirements for the serializer.

2.4 Simple serializers

It is infeasible to present definition, specification, and verification techniques

for general serializers in this thesis. Therefore, we will restrict our attention to a limited

version called simple serializers. A simple serializer has the following restrictions:

* The representation object (of type rep) for a simple serializer is a record
that may only contain a single resource object and a fixed number of
statically named queues and crowds.

* All queue and crowd expressions are limited to selection of

representation components.

* 'The guarantees on the enqueue statements can only test for qUeue$empty,
crowd$cmpty, the logical and (x & y) of guarantees, and the logical or
(x I Y) of guarantees.

* Only enqueue and join statements may be executed while in possession of

the serializer object.

* tch serializcr operations must correspond exactly in number, name, and
interface to a corresponding resource operation. No statements may be
exectled inside a join statement except to invoke the corresponding
resource operation. returning its results if there are any. 'Ibhis restriction
also precludes the handling of exceplions.

Inside of a simple .rializer operation, the return statement does 101
immediately rcturn an objccl from the operation, as it would in a normal
operation. Instead, it is used to indicate the object to be returned when
the serialiter operation Icr 'inates. 'Ibis restriclion is present to simplify

- 31 --.!1

*

the semantic model in the next chapter.

While the above restrictions may seem severe, they allow us to keep our

presentation of details not associated with concurrency control to a reasonable level.

Simple serializers are sufficient to solve the readers-writers problem, as well as some

more involved examples.

In several places throughout the thesis we will indicate how extensions to

simple serializers can be handled. These extensions include cases where more

comiplicated computation must occur to determine the order of processing requests,

where the interfice to the serializer differs from that of the underlying resource, and

where the serializer and the resource are implemented together.

2.5 Using semaphores to implement serializers

In this section we present a possible implementation ofrsimple serializers using

I'.ir semaphores and clusters. We do this for two reasons:

I: lo show that the seriali/cr mechanism is realizable.

2: To give further insight into the semantics of srializers by giving a
translation into a more coimonly inderstood mechanism.

'Ibe Semaphores that we use can he freely created, and obey a FIFO discipline when

muiltiple processes request tile same semaphore. We also describe the operations on the

quetuc and crowd data I.pcs used in this implementafion of seriali/ers.

-32-

- . 2

We assume that the semaphore data type has the following operations:

create ()returns (semaphore)
returns a new semaphore with count = 0.

P (S: semiaphore)
Atomically tests and sets the count of the given semaphore. If count
> 0, the Counlt is decrernented and the operation completes. ircount
= 0, then it stays 0 and the process performing the P operation does
not proceed until the count beconmes positive. Once the count
becomes positive, the process waiting the longest decrements the
Count and completes the P operation.

V (S: semaphore)
Atomilcally increments the count. Note that a P operaItion on an
initially created semaphore must wait for a corresponding V
operation.

We assume that the queue data type has the rollowing operations:

create () retuirns (queue)
creates a new, empty, queue.

enq (Q: queue, T: seiiiaphore, G: guar)
adds the 'I, 6 pair to [lie queue, making thie queue non-emipty. 'lih
type ol 0. the guarantee cxpressioii. is assumned t) be a predicate to
indicate whether thie guarantee is true.

deq (Q: queuec) signals (emipty)
removes [lie ad pair ir the queuie is 11o1 empty. otherwise signals

-j empty.

- 33 -

71i

empty (Q: queue) retLirns (bool)
returns true if the queue is empty, Ilse otherwise.

get guar (Q: queue) returns (guar) signals (empty)
returns the guarantee evaluation procedure at the head of the queue
if the queue is not empty, otherwise signals empty. Note that
queuedgetguar(Q) can also be written as Q.guar.

get.sem (Q: queue) returns (semaphore) signals (empty)
returns the semaphore at the head of the queue if the queue is not
empty, otherwise signals empty. Note that queue$getsem(Q) can
also be written as Q.sem.

We assume that the crowd data type has the following operations:

create () returns (crowd)
returns a new, empty, crowd.

insert (C: crowd, T: semaphore)
inserts a semaphore into a crowd.

remove (C: crowd, ": semaphore) signals (absent)
removes a semaphore from a crowd if present, otherwise signals
absent.

empty (C: crowd) retlrns (bool)
returns true if the crowd is empty, Iilse otherwise.

lmplementing a scrializer as a cluster that uses semaphores is a translation that

has the following cases:

- 34 -i

• ,kL

1: 'Ile scrializer becomes a cluster, and the representation object is
extended to include a sem component, which is of type semaphore: and
an eval component, which is of type sequence[queueL. 'Ilie sere
component is called the exiernal semaphore, and the eval component is
called the queue list.

2: The create operation initializes the external semaphore to a newly created
semaphore, and performs semaphore$V on it. The queue list X.eval is
initially the sequence of all queues in the representation.

3: Each operation that requires possession is given the following prolog:
semaphore$P(X. sem)
T: semaphore := semaphoreSnew()

where X is the name of the cvt argument, and T is a unique local variable
lsed to hold a newly created semaphore for the transaction. T is used to
represent the process in queues and crowds.

4: A return statement is translated into an assignment to a temporary
variable (or a multiple assignment if multiple return values are present).
'"'his reluires such variables to be declared in the prolog, and their values
returned in the epilog.

5: Each operation that requires possession is given the following epilog:
Eval(X)

where the Eval procedure is an internal operation used to select the next
process to proceed, and will be detailed below.

6: Fach statement of the form:
enqueue Q until G

is translated into:
queue$enq(Q, T. G') % place self in queue
Eval(X) % release possession

A senaphore$P(Q.sem) Z regain possessionqueue$deq(Q) Z remove self rroon queue
where Q is the qutice to LIs in the expI.essiotn, T is tile local semiphore
variable introduced in the prolog, and G' is a procedure (described as

.35-

L~iw

type guar) used to evaluate G.7

7: Each statement of the form:
join C

Body
end

is translated into:
crowd$insert(C. T) % place self in crowd
Eval(X) % release possession
Body % execute body
semaphore$P(X.sem) % regain possession
crowdSremove(C, T) % remove self from crowd

where C is tile crowd to join, and Body is the body of statements to
execute while not ill possession.

The Eval procedure selects the next process to receive possession. It first

checks (in some unspecified order) the non-empty queues to determine whether the

gUarantee at the head of the queue is true. 1lie first non-empty queue found with a true

guarantee has V performed on its head semaphore, and Eval returns. If no non-empty

queues are found with true guarantees, V is perfbrmed on the external semaphore. Eval

can he written as:

7. A reader Idmiliar with ('I I may notice thiit we hae Iaken mime lihenies in u.ing (. and hoc not
1,1.1 tlhelilled the type gultr. In gCeeral, it is ieessalV to tihe cisurC of irIK.eIrwewand da(.i to properly
l0iue1 (G. We hade a otdcd thewe is ues 101- dhe sake o simpliicit: th do no(,ialed.' our1 approach to

col llr re.,l CIy otrol.

6 3(-

Eva] proc (X: rep)

% examine all queues for true guarantees
for q: queue in sequence[queue]$eleinents(X.eval) do

if queue~empty(q) then % if queue is empty
continue % then examine next queue
end

if q.guar(X) then % if guarantee is true
semaphoreSV(q.sem) % then allow that process
return % to continue execution
end

end

% no non-empty queues have true guarantees
semaphoreSV(X.sem) % serve the external queue

end Eval

TIhe above version of Eval always checks the queueCs in sonic particular order. It would

be equ~ally valid to check the queues in any order, even if non-deterministic.

An example of how a serializer is implemented using clusters and semaphores

is shown in Figure 3. We have omnitted the write operation, since there is li:tle

diffiercnce from the read operation; and the Fval operation, since it was shown above.

2.6 A compa~rison of serializers with monitors

Th'le unrestricted serializer construct has many similarities to the monitor

construct [Brinch I lainsen 72. Hoare 741. 11oth serializers and monitors deal withi

synchronizaition by encapsulating details of concurrency control within a set of

procedures. We present a brief comparison of thie serializer and monitor constructs

.37-

Figure 3. Semaphore implemenlation or I"Imo

FIFO = cluster is create, read, write

elist = sequence[queue]
rep = record [rc: crowd, % readers' crowd

wc: crowd, % writers' crowd
xq: queue, % common queue
res: resource, % unserialized resource
eval: elist, % the queue list
sem: semaphore] % the external semaphore

create proc () returns (cvt)
E: semaphore := semaphore$create()
semaphore$V(E)
Q: queue := queue$create()
return (rep$(rc: crowd$create (),

wc: crowd$create (),
xq: Q,
res: resource$create (),
eval: elist$[Q].
sem: E)

end create

read = proc (x: cvt, k: key) returns (value)

% Prolog
semaphore$p(x. sem)
T: semaphore := semaphore$create()
v: value

% enqueue x.xq until crowd$empty (x.wc)
queue$enq(x.xq. T, crowdSempty)
Eval(x)
semaphore$P(x.xq. sem)
queue$deq(x.xq)

% join x.rc; return (resource$read (x.res, k)); end
crowd$insert(x.rc, T)
Eval(x)
v := resource$read(x.res, k)
semaphore$P(x. sere)
crowd$remaove(x.rc. T)

7. Epilog
Eval(x)
return (v)
end read

(. ihe write operation is not shown.

end FIFO

- NE 8 -

t,

below.8 Fxcept where noted, properties of the monitor construct are taken from

[Hoare 74].

A serializer abstraction is intended to have the same interface as the protected

resource, while the monitor appears to be a lock on access to the resource. The

serializer construct has the expressive power to be used as a lock, but the monitor does

not have the expressive power to mimic the resource (without serious loss of

concurrency). 9 The serializer and monitor constructs both protect the underlying

resource by controlling concurrent access to it, providing that the only access is through

the serializer or monitor. The serializer construct further protects the underlying

resource by allowing the programmer to prevent access to the resource except through

the scrializer. This protection can be achieved with monitors by having a data

abstraction encapsulating a monitor, such that both the resource and the monitor can

only be accessed through the data abstraction. Our prelerence is to provide this

appearance through a single construct.

The serializer construct allows possession of the serializer object to be released

and regained in a controlled manner within a serializer operation. In the monitors

presented in l-loare 741 there is no such provision. In an extension to monitors

[ILanip l n and Redell 79 it is possible it) write operations that do not require possession

8. A comparimin of an carlier versim of seriali/crs with nionitors alpar, in 11 lewiu and Atkinson 791.
An caltiition of'serialicrs. niinii rs and pat h cxprcssio ns.ippears in IIlohnmi 791.
9. Iklcnsions which alkvi te Ihi,, proihlcn hIae heen nade Ibr the monitor. pr-icnted in
It .anipso and Redell 791.

" 39 -

,t-;'Ir" U "' ,

of the monitor. This allows an operation to be written that requires possession of the

monitor only for parts of the operation. "llese protected parts are required to be

invocations of monitor operations that require possession. This solution is slightly more

complicated to use than the serializer join statement, but is otherwise similar.

Serializers use explicit guarantees at the point in the procedure where a

process waits on a queue. That guarantee is true when the process proceeds (providing

that removing the process from the queue did not change the guarantee). Monitors also

have first-in-first-out queues (called conditions), but the expressions that determine

which queues are to be serviced next are distributed throughout the various procedures

of the monitor, which complicates the verification task.

As mentioned brielly above, there is a basic difference the use of queues in

monitors and serializers. Processes in the same queue in serializers can be waiting for

different guarantees. Although the same effect can be achieved in monitors, it usually

requires extra code to do so, and is difficult to write and understand.

"lie serializer construct, like he Cl.U cluster constrtct, supports sets of

objects belonging to an abstract type. The monitors proposed in [loare 741 tend to

slpport one-of-a-kind encapsulation. This difference is more a reflection of the base

language used than a basic difference between serializers and monitors. We mention

this difference because we believe that supporting sets of objects is a better choice to

make, since there is more potential concurrency in a system where data is partitioned

into separate objects.

- 40 -

t .

4.d,* ~ ~ w *J

- -I-- / !I :-- - _ X I J ' 1 I I ,t I' # ,

2.7 Opportunities for optimization

One objection that might be raised to serializers is that they are inherently

inefficient: at every release of possession the queues must be checked to determine

whether the condition at the head of each queue is satisfied.10 For this objection we

have two answers:

1: It is Unlikely that the evaluation of such conditions will be expensive
compared to the execution of resource operations.

2: In the event of the guarantee checking being a significant cost in a
program, optimization techniques are especially applicable in this limited
context.

As an example of how we might optimize the checking of guarantees, consider
the FIFO example. When a writer leaves the writers crowd. i1 is easy to prove that both

the readers and writers crowds are empty. 'Ihis knowledge allows in optimizing

compiler to immediately dequeue the next transaction in the qitiC (if an)) whenever a

writer completes. In such a case, no guarantec e'aluation takes place. Whei a reader

leaves the readers crowd it is easy to prove that the writers crowd is still empty, which

allows tile compiler to simply check the head of" the qlcte fbr a reader, ditus avoiding

any more complex evaluation. Whenever a writer joins the writers crowd all guarantees

are known to be false, and do not need to be checked at all. In shot, we have shown

that intermediate steps or the %e rlication progral can lead I to su icient in fbrniation to

10. A similar objeciion is actually raiscd in II Ioare 74. p. 5561.

-41-

WRSI

perform optimizations that can significantly reduce overhead for checking guarantees.

We have advocated designing, verifying, and implementing serializers and

data abstractions independently. This independence can lead (especially in CLU) to

many levels of procedure calls, where each procedure performs an extremely small part

of the computation. When the overhead for procedure calls costs on the same order as

the rest or the computation, it becomes desirable to substitute the bodies of procedures

fbr their invocations [Atkinson 76, Scheiler 771. For serializers in the style we have

advocated, it is generally both simple and beneficial to perform this sUbstitution. We

note that the simplicity of the substitution is greatly aided by our initial requirement

that the serializer present the same interface as the underlying IreSOLrCe.

-42-

.-z: : " ,- " 2 , . ..,., .. -

3. Semantic Model

In this chapter we present an abbreviated semantic model for concurrent

execution of programs, and use it to define serializer semantics. In the next chapter, we

use the model to define a small specification language for serializers.

The semantic model we use to define serializers is intended to be embedded

within a larger semantic model, just as the serializer construct is embedded in a larger

programming language. We will not be concerned initially with which larger model is

used, although we will return to the issue later. Whatever larger model is used, there

must be support for shared objects, side-eflects, and concurrency.

We will first give an overview of the semantic model for serializers, assuming a

particular larger semantic model. Then we discuss the various components of ,he

model in detail. Then we give the meaning of the serializer construct by giving

predicates that all serializers must satisfy. Finally, we discuss the role of induction in

the serializer model, and outline how the model might be embedded in a different

larger semantic model based on message-passing between processes.

-,

- 43.-

I .",.,,. ' U L i.",I ' ' - ' - -

3.1 Overview of serializer semantics

Informally, (he text of a serializer is a set of statements that describe what

happens when serializer operations are executed in a system with concurrent processes.

To give the semantics of the serializer construct, we require a definition of' "serializer

operations", a definition of "execution", a definition of "process", and a definition of

"what happens".

The model we choose can be viewed as an interpreter. Each procedure is

represented by a graph composed of basic instructions that indicate which actions to

perform and arcs between the instructions to indicate the order of execution. There is a

global slate, consisting of a set of shared objects and a set of processes. Each process has

a local state, which includes a set of local objects, a stack of procedure activations, and a

program counter that indicates the instruction that the process is to execute next. Fach

instruction represents some basic action. ExecLting an instruction modifies the global

or local state. The execution of an instruction always indicates the next instruction in

the process by niodifying the progra1n counter. A process where the next instruction is

pertitled to occur is called active. Execuing certain instructions may cause a process to

become inac/ive until certain conditions hold.

For simple serializers, the only conponents of Ihe global state modelled are

the state of the queules and crowds Ir the serializer object, and the state of serializer

possession. The only component of the local state modelled is the program counter

within a serializer operation.

-44-

:1 The interpreter proceeds by choosing an active process, and exceuting the

instruction indicated by the program counter of that process. Although the choice of

process is non-deterministic, no process that is active may be indefinitely denied

execution. We call the sequence of instructions executed by the interpreter a history.

We can give the semantics of this informal model through a predicate that

takes a history, an initial global memory state, an initial set or processes (and their local

states), and a set of graphs representing the procedures in the system, and returns a

boolean indicating whether the history could be produced by the interpreter we have

described. We will call this predicate the global legality predicate.

In this thesis we are discussing a single language construct. In this context,

presenting a complete definition for a language would occupy more space and attention

than it merits. The semantics of a language construct can be defined through a partial

legality prcdicate that partially determines the global legality predicate. For the

serializer construct, this predicate is false ror histories that are prohibited due to

serializer semantics, and true ror others. We will not present a definition of a larger

language, nor fbrmally state the interactions between the serializer construct and the

other Language reitiires.

'I

*-43

Wk1 ;1;5.

3.2 Nodes

In defining what is meant by "execution ofserializer operations", we first need

to define a representation for an operation and its associated data. Since we are dealing

with only one serializer object at a time, it is convenient to regard the serializer

operations and the scrializer object as being inextricably bound together into a single

unit. For brevity in this chapter, we will use the term scrializer object to refer to this

unit.

Fach serializer operation (bound to an associted serializer object) is

composed of nodes. A node is just (informally speaking) an instruction at some location

in a program with its associated data. A node graph is used to represent a serializer

operation, where the arcs in the graph represent sequential execution. For simple
i ializcrs, the node graph is degenerate, since there is a linear order to the nodes. We

have used the term graph to case the discussion of extensions to this model.

"he following kinds of nodes are involved with synchronization in a simple

scrializcr. At such a node, possession of the scrializer object may be gained or released.

enter (opera/ion natmffinualargume, ns)): Iihis node represents the
initial entry to an operation that requires possession of the serializer
object. After this node is executed, the executing process has
possession.

exit: This node represents tie epilog to an operation that requires
possession. Excntiing this node releases possession.

-46-

'I|

: - . .o-la ,. .~f ! * , ,

enqueue (queue, guarmauec): Thiis node represwnits the first part of an
enqueue statement. Fxecuting this node places the process in the
specified queue with the specified guarantee and releases possession.

dequeue (queue, guarantee): This node represents the second part of the
enqueue statement. Executing this node regains possession and
removes the executing process from the queue.

join (crowd): 'his node represents the start of the join statement.
Executing this node places the process iii the crowd and releases
possession.

leave (crowd): 'Ibis node represents the end of the join statement.
Exccutting this node regains possession through the external queue
and removes the process From the crowd.

The following kinds of nodes are used for other primitive actions that can

occur in a simple serializer.

invoke (invocation): '"his node repreents the termination of execution of
the specified invocation. For simple serializers it will only appear
once, and must appear in the body ofa join statement.

return (invocalion): As with the invoke node, the return node represents
the termination ol execution of tie specified invocation. -xecuting
the return node also designates the object to be returned when the
serializer operation ternina(es at the exit node.

'lhe Ilse of invoke and return nodes in simple serializ.ers is limited to showing where tie

operations of the underlying resource are called.

.47-

Each node N has the following structure:

* N.kind - an identifier (one of enter, exit, enqueue, dequeue, join, leave,
invoke, return) indicating the kind of node.

" N.next - empty for exit nodes, otherwise the next node in the execution
sequence. Note that the next node for any return node is an leave node if
the return is performed while in a join statement, otherwise the next node
is a leave node.

* N.mob - fbr enqueue and dequeue nodes, the queue used; for join and
leave nodes, the crowd used; otherwise empty.

* N.expr - for enqueue and dequeue nodes, the condition to guarantee; for
return and invoke nodes, the expression to evaluate; for an enter node,
the operation name and its formal arguments; otherwise empty. Note
that for an invoke or return node the information about which procedure
is executed and which arguments are used is contained in the expression.

* N.match - for an enqueue node, the corresponding dequeue node; for a
join node, the corresponding leave node; otherwise empty.

Il1e transformation of a serializer operation to nodes will be given by example.

Suppose we have the 1l6lowing operation in a serializer:

change = proc (x: cvt, d: data) returns (value)
enqueue x.q until crowd$empty(x.c)
join x.C

return (resource$change(x.r. d))
end

end change

-48-

-A< 1" l-

"lhe node graph for the above operation can be represented as:

NI: enter (change(x, d))
N2: enqueue (x.q, crowd$empty(x.c))
N3: dequeue (x.q, crowd$empty(x.c))
N4: join (x.c)
N5: return (resourceSchange(x.r, d))
N6: leave (x.c)
N7: exit

In the above graph, Nl.next = N2, N2.next = N3, and so on. N7.next is

empty. The queues, crowds, and expressions are indicated.

N2.mob = N3.mob = x.q

N4.mob = N6.mob = x.c

N2.expr = N3.expr = crowd$einp1)(x.c)

The reader should be cautioned that the description wc Ivave given for nodes

and node graphs is incomplete. We have not discussed conditional statements,

assignment, exceptions, or iteration. In later chapters, we will describe how extended

node graphs would be handled.

-49-

T...

- *~j ' ~i *~i

3.3 I~enis

Informally, an event is the completion of execution of a node in a process. For

our purposes, the important features of an event are:

An event is atomic. An event takes no time to occur, although the
amount of time between events is always positive and finite.

An event is associated with a single node of a serializer.

* An event is associated with a single "process". We assume that the reader

has some intuitive idea of process. We will introduce a more exact
definition ofa specialization of the process notion in the next section.

It has been proposed [Greif75] that an event is a state transition. 'Th1e state of

a simple seriaizer consists of the state of the serializer queues (not including the

external qtece), the state of the serializer crowds, and the slate of the serializer

possession. Only the simple serializer events (ener, exit. enqueue, dequeue, join, leave)

change the state Of posCSsion. Changes in possession that do not after internal qteues

or crOwds result from enter and leave events. Changes to internfl qulleus result from

tcleuIct ano dequeue events. Changes to crowds result from join and lea e events. We

will rcturn lo this point in a later chapter.

In a fill[SeMtantic model We would have to show where an invocation started

and where it terminated. For sinplicity, we have chosen to not represent the event that

marks the start of an invocation. '11wc invoke and return events are sufficicnt to indicate

where the resource operations are called, which is all that we need at Ihis pIlint in our

- 5O) -

iil

discussion.

A dequeue event marks a change in state of the indicated queue, and a change

in the possession of the serializer. A dequeue event for some process will not occur until

after the corresponding enqueue event, and not until that process is at the head of its

queue and the guarantee evaluates to true. The evaluation of guarantees takes place

immediately prior to every event that releases possession (enqueue, join, and exit events

release possession). For any event E that releases possession, we will assume that

evaluation of the guarantees takes place between E and the serializer event immediately

preceding F. For simple serializers, where the guarantees are limited to side-efTect free

evaluation of expressions involving the serializer state, no further events need to be

introduced to represent the evaluation of guarantees. If" more involved expressions are

allowed, events representing such evaluation mu" be introduced.

3.4 Transactions

For a serializer, a transaction is a sequence of scrializer events that occur for

some process in the execution of a serializer operation for some seriali.er object. Ilie

order of events in a transaction is the same as the order in which those events occur in

the execution of the serializer operation. l-iach enter event for sonc serializer object is

the first event in sone transaction, and each exit event is the last event in some

tran action. We assign a unique iransaclion idcl'iter at Ihe occurrence of an enter

event.

own&"

A transaction may also be viewed as a segment of a process. There may be

many transactions involving a serializer object for any particular process, but a

transaction can only belong to a single process. lhe intent of transactions is to capture

only the anount of detail about a process necessary to define serializer semantics.

Where we formerly used the term process, we will now use the term transaction.

Now that we have identified events as being associated with transactions and

nodes, it is notationally convenient to give events a structure. Each event F has several

corn ponents:

* E.trans - the transaction identifier fior the event.

* E.node - the node associated with the event.

* E.kind - the same as F.node.kind.

We can associate possession of the serializer object with a transaction by

noting that if there hae been more gaining than releasing events kr sonme transaction

in some finite history (the difference can only be 0 or 1), then the transaction has

possession of the serializer froiii the last releasing eCnl(ci r that transaction lip to the

last event in that history.

-52 -

-200 .i

3.5 listories

For a serializer, a hisiory is a scquence (possibly infinite) of events that

represents all events that occur for a particular scrializer object. For a given serializer

object, there are infinitely many possible histories, depending on the requcsts sent to

that scrializer object and on the arbitrary choices possible in selecting dequcue events

when several queues are ready.

A history can be iewed as being scam interleaving of the transactions

involving a serializer object. ,,er event in a history also belongs to some transaction.

The reverse is not true, our model includes histories with incomplete transactions.

Serializcr semantics is defined by stating which histories can be produced for

any given scralizer object. We deline a predicate that, given a representation of

scrializer code and a scrializer history, will be true if and only if the history could be

produced by the scrialier. A history that satisfies that predicate is called a legal hislorj

ror that serializer code. A more complete definition of a legal histor occurs later in this

chapter.

We assume that the fillowing I'uncions are defined on scrialiler histories:

Finite(M I)
is true if the history is finite: otherwise illse.

Sic (11)
returns the rmber of elements in II if' II is Iifitc: otherwise is
undefincd.

-53 -

Indexset (H)
if H is infinite, returns the set of positive integers; otherwise returns
the set ofintegers {N I 1 <= N (= Size(H)}.

Nth (l, N)
returns the Nth element of H if N C Indexset(H); otherwise is
undefined.

Head (H, N)
returns a prefix of H that is the first N elements of H, provided that

-- NC Index-se-(H); returns the empty sequence if N is 0; otherwise is
undelined.

For simplicity, we have chosen to model only those operations that accept a

serializer object as an argument. We assuLIme that the serializer object is initially in some

initial state, such as that obtained by executing its creale operation: the resource object

is in its initial state, no transaction has possession, and all quenes and crowds are empty.

The model we have presented is only sufficient to represent operations where

possession of the serializer object is gained. For example, the FIFO serializer presented

in the previous chapter has three operations- the model we have presented is only

su flicient to represent Iwo of them: read and write.

- 54 -

I1

3.6 IDeriions

Predicates will he defiiicd in a diilcet of' first-order predicate calculus.

Fuinctions are defincd using a Sinmilar syntax, but avoid the Use OF quan,11tifiers. We call

this language the definiton fan guage, and will refer to it as such in later chapters.

Many of tie Following definitions are more easily expressed if we have a

notationl For conditional expressions. The expression "if X then Y else T' is taken to be

Y if X is true (even if Z1 IS Undefined), and Z If' X is fialse (even if Y iS Undefined), and

undefined if X is Undefined. We alIso Use the "elseif" extension to this notation, as in

CLU, to allow convenient syntax (br multiple cases. In cases where the "else" clause is

onlitted, "else trueI" is assum1ed (which implies that only boolcan conditional expression

may omnit the "else" clause).

Many of the functions and predicates given below are defined only 16or finite

histories. In our definitions, these Functions and predicates arec never apphied to in finite

histories, so there is no need to define them for those cases.

- 55.-

Ah -. A.,

Event F occurs in history I-1 if there Is somne integer index N such that F is tile

Nth event of H. Fvent Fl. precedes event F2 in history H if both F1 and F2 occur in H-,

and tile index where F1 OCCLIIFS is less thlan the index where F2 occurs.

Occu rs (E, H)

3 1 E Index_set(f-1): E Nth(H, 1)

Precedes (El, E2, H) =

1 1, J E I ndex-set(H):
I <J & El Nth(H,l1) &E2 Nth(H, J)

Note that we have assumned that an event can only occuir on1ce in a history. Tlhis is

implied by later dlefinitions.

As a notational convenience, we introduice the predicate Sanmejrans(H-, 1, J),

which is trule If the Ith and Jth events in history H are from the samne transaction. The

predicate is Undefined if thle integers I or J do not belong to Inldex..set(H).

Same-trans (H, 1, J)
N th(H[, I).trans Nth([i, J).Lrans

-56-

We often need to express the idea that a particular event, or all events for a

given node, cannot occur between two given events.

Exc)Ludes (El, E2, E, H) -

*Precedes(E, El, H-) 1 Preccdes(E2, E, H) I E =El IE E2

Excludes-nodle (El, F2, N, F-I)
V I E Index set(H):

if Nth(H, 1).node = N

then Excludes(El, E2, Nth(H, 1), H)

A slightly more complicated predicate will be needed to specify a more

general exclusion predicate (to be Used in later chapters).

Node-excludes-node (N 1, N2, N, H) is trueI iff no event for a given node N can occur

between any two events El and E2, where EI.node =NI, E2.node =N2, and

EI.trans = E2.trans.

Node-excludes-node (NI1, N2, N. H)

V lj C Index set(H):

if(Nth(H, I).node =NI

& NMh(II L.I.node = N2
& Sanie-_trans(, 1, J))

then Fxcludes_ node(Nth(II, 1), Nih(l1, J), N, 1-)

Intuitively, Node excludes-node(N 1, N2, N, H) express the restriction that no event

generated by node N occurs between events generated by nodes N I and N2. where the

events from N I and N2 belong it) the samne transaction.

- 57 -

I *~ *, ..,

We are often interested in the last event of a finite history, or in a history that

lacks only the last event of a given finite history. The functions ILast and Front are used

fibr notational convenience.

Last (H) = Nth(H, Size(H))

Front (H) = Head(H, Size(H) - 1)

Certain events gain excILisive possession of the serializer, while other events

release possession of the serializer. Still other events do not change possession.

Gains(E) is true only if the event E gains possession, while Releases(E) is true only if E

releases possession.

Gains (E)

E.kind enter I Ekind leave I E.kind = dequeue

Releases (E)

F.kind exit I F.kind = join I E.kind enqueue

- 58 -

? *L

:1

A finite serializer history is busy if its last event gained possession of the

serializer, or if its last event did not release the serializer and the history before that

event was busy.

* Busy (H) -

if Size(H) = 0 then false

elsei f Releases([ast(Il)) then false

else Gains(Last(H)) I Busy(Fron t(H))

The functions Qsize and Csize return the number of transactions using a

queue or crowd given the queue or crowd and a finite history.

Qsize (Q, H)

if Size(H) = 0then 0
elseif Last(H).kind = enqueue & Last(H).mob Q

then Qsize(Front(-ir)) + I

elseif Last(H).kind = dequeue & Last(H).rnob = Q
then Qsize(Firont(H)) - 1
else Qsize(Front(H))

Csize (C, It) -

if Size(H) = 0 then 0

elsei f .ast(I I).kind - join & I.ast(l I).mob = C
then Csize(FronI(H)) + 1

elseifl.ast(l l).kind z- leave & I.ast(tl).mob C

then Csize(Front(H)) - 1
else Csize(Front(H I))

-59-

In certain serialier specifications, the rank of an event is important. Il'e ,-ank

of an event F is an integer that represents the order of E relative to other events

occurring at FEnode. TIhe firs(event to occur at a node has rank 1, the second has rank

2, and so on. 1ie rank of an event that does not occur in a history isO0.

Rank (VH, E)a
if Occurs(H, E)

then I + Rankscan(-, E, 1)

else 0

In defining Rank, we made Use of Rank scan(H, F, 1), which returns the

number of events occurring in H- at or after event Nth([I, I) and before F with the same

node as F.

Rank-scan (H, E, 1)a
if Nth(I-l, 1) F then 0

elsei f Nth(HI, I).node E .node
(lien I + RZInk-.scafl(H, F, 1 + 1)

else Rank_scan(II1, E, I + 1)

N 6) -

LAME

I

3.6.1 Ii ,liation or guiraices

Whenever a serializer is released, the guarantees of the non-empty qleuLCs are

evaluated. The rollowing functions define such evaluation given a finite history and an

expression to be evaluated. The notation {G I is used to represent the expression G

occurring in serializer code, and distinguishes the expression from our definition

notation, since the syntax for expressions and definitions is often similar.

Eval is defined by cases, each case being based on the syntax for boolean

expressions. For simple serializers, Eval returns a boolean value, since guarantees are

limited to boolean expressions involving tests on the emptiness of queues and crowds.

Eval (H, IG I & G21) = Eval(H, IG I) & Eval(H, 4G21)

Eval (H, IG II G21) - Eval(H, IG I1) I Eval(H, 4G21)

Eval (H, I,- G 1) - -Eval(H, IGI)

Eval (H, {crowdSempty(C)}) Csize(Var(ICI), H) = 0

Eval (H, Iqueue$empty(Q)l) Qsize(Var(IjQ), H) =0

Eval (II, 1ialseI) - false

Eval (fl, 1truel) M trUL

The Var flinction (in Var({Qj) and Var(ICI)) is a mapping from syntactic

expressions for quenes and crowds to some semanlic representation for queues and

crowds. We require that the mapping produced by Var is the sane miapping that is

-61-

U-

used to produce the N.mob component of any node N in the history H.

The above definition of Eval is tailored to the needs of defining the semantics

of simple serializers. There is no provision for local variables, which would be

* transaction specific. There is no provision for guarantees with side effects, exceptions,

or non-termination, which would require the use of events to mark the state transitions.

Fuirther, such provisions would also complicate the definition of the Var function.

3.6.2 Legal histories

A history is legal if it can be produced by somne execution of a serializer.

Lcgal(H, S) takes a history and a set of nodes that represent the code for a serializer,

and returlls true if the history could have been produced from the serializer code. A

legal history must be composed of legal steps. iliat is, each prefix of the history can

only be followed by an event that represents a permitted state transition of the

serializer.

For a finite history H to be legally followed by the event F, the following rules

must be satisfied:

* I-or F to gain possession of the serializer, then there can be no transaction

in possession ol the scrializer (- Busy(H)).

* If there is a transaction in possession of the serializer, ihen F must belong

to that transaction.

- 62-

...... I

* * If F is a dequCue event, its transaction must be at tile head of its queue

and the guarantee nmust be true.

* If F is an enter or leave event, there may be no queues such that the front

transaction in the queue has a true guarantee.

** All events from a single transaction must occur in the order dictated by

legal execution of the code ror the operation Cxecuted by that transaction.
In particular, an enter event must be the first event in its transaction.

Note that there are no restrictions explicitly involving join and exit events. The only

restrictions that we impose for these events are expressed by the requirement for "legal

execution" of the node graph.

The above conditions lead to the following definitions of Legal and

Legal-step, where 1-1 is a history, and S is the set of enter nodes for the operations of the

serializer that require possession.

Legal (H, S) -
V N C lndex set(H): Legalstep(Head(H. N-1), Nth(H, N), S)

I egal-stcp (H. E, S) a

((if Gains(E) then - Busy(H))

& (if Busy() theiIn l.ast(H).trans = I-.trans)
& (F.kind = dequeue : Legal-dequeuc(il. IF))
& (if -.kind = enter I .kind = leave then None ready(l1))

& legal_tranmm'tion_- step(I-Il, F)
& (F.kind enler D EKnode E Nod..s(S)))

, .. .r; .-

Thle event E Is it legal (Icqueue event after the end of history H if the gUarantee

is true, and the corresponding etiqueuc event is is at the head of its queuLe in history HA.

Legaidequetic (H, E)
(Eval(H, Fexpr)

& 3 1 E(Index-set(H):

(Nth(H, l).node.next = EKnode

& Nth(H, 1).trans = E.trans
& Head..enqueue(H, 1))

The transaction for the enqucuc event Nth(H, 1) is at the head of its queue if

Nth(H, 1) is the Last event in H for the transaction, and every other enqucuc event

occurring in H before Nth(H, 1) has a cot-responding (Icqueue event.

Head-genqutue (H, I)
(lI1..qLetue(H, 1)

& V J E Index-set(H):

if J < I then -In_satrneqLeele(H, 1, J))

llInqueIe(VH, I) is trle only if Nlh(H, 1) is an ciiqucuc event that is the last event in FI

Ibr its transaction.

In iqueuie (H, 1)

(Nth(H, I).kind =enqueue

& V. E Index %s,1(11):

ifi > I then -Samle..jians(I 1, I, J))

-A4-

In-saie..qtieue(lI, 1, J) is true ill Nth(I-I, I) and Nth(H, J) arec enqueuc events that are

Sthle last events In their transactions and thle transactions are in the same queule.

In samne queue (HI, 1, J)

(InqLI'LIe(H,)

& Nth(H, I).node.mob =Nth(H, J).node.tnob)

None_ ready(H) is trueI if for a particular finite history there is no explicit

serialiZer queiCe suIch that the fr-ont transaction in the qtueue has a guarantee that

eVaIluates to trtlc. This predicate is uised to define thle priority of explicit qutes over

the single external quetue of a serializer.

None-ready (H)

V I E lildex..set(H):

if Head-snqueuie(H, 1)

then -Eval(H. Nth(H, l).node.expr)

An event E can be a legal step after son history 1-I only if it can be produced

by sequential exectition of sotflC transaction. Ilucre must not be an event in H with the

sme transaction and the samne node as F; and if is not an enter node, then there must

be an event in H from the same transaction as F that results fromn exectiting a niode for

which Knode is the next node.

-65 -

I!

*C ILegltransaction_step (H, F)

(V I E Index-set(H):
(if F.trans = Nth(II, l).trans

then E.node * Nth(H, l).node)

& if E.kind * enter
then 3 1 E Indexset(H):

(E.trans = Nth(H, l).trans
& Enode = Nth(H, l).node.next))

3.6.3 ('omplete histories

The set or legal histories for a serializer inclUdes histories where transactions

have been started but not completed. Any finite legal history where the serializer slate

requires further events to occur is termed incomptcic. All other legal histories are

complete. A complete finite history is one where no ttrther events are required to

occur. Events are required to occur according to the following rules:

[lhe serializer specification language will be interpreted as defining

sp'c'atnion iredicaics on complete histories. Serializer code is said to meet its

specifications if the specification predicates are true for ever corn plete history of that

code.

- 66 -

All,

For a coln plcic h i tory, .all .1C ts that arc req uird to (Cur in the i is(ory must

(k cur.

*Wihlcln lI cIca,,ing ect o.ccIS anld there are ready queties., a (leqiCUe

c cut I'ronm one of those quulcs is required. Therefore, if I is finite, and
the last vcent in 1 rclcascd possession, then H is only complete if no
queues arC ready.

For C cr ccnt that gains possession of the serializer, a corresponding

event that refleascs ihe scrialicr is required. For simple scrializers, every
gaining e.cnt w,,,ill be follo'cd by a releasing event. Note that this
condition implies that if t1 is finite and not empty, then l.ast(H) was a
releasing event.

For every join event, a corresponding leave event is required. We assume

that every operation of the underlying rcsoLrcC used in a join statement
will terminate. Such an assumption is part of a modular proof of
tcrmination for prograns involving scrializers.

'liese conditions lead to the Ibllowing delinition for Complete, where H is a history for

some serialiier, and S is the set of enter nodes for operations of that scrializer that

req u ire possession.

Complete (F-, S)
(L.egal(H, S)
& (if Finitc(l I) then Nonerady(IH))

& Gail comiplete(H)
& .oi ncom plete(H))

- 67 -

jI7

Gain..conplete(F) is tuuie if for every gaining event there is a corresponding

releasing event that occurs after the gaining event.

Gaincomplete (H)

V I E Index set(H):

ifGains(Nth(H, 1))

then 3 J E Index set(H):

Corresponding release(H, I, J)

Correspondingrelease (H, I, J) is true if Nth(H, J) is the releasing event that

corresponds to the gaining event at Nth(H, I). A releasing event corresponds to a

gaining event if both events are in the same transaction, and there are no intervening

releasing events for the same transaction.

Correspording release (H, I, J)

(Release follows(H, I, J)

& V K E Index sct(tt):

if K (J [hen -Release_ f)llows([l, I, K))

Release-follows (IH, I, .1) is true ilT Nih(H,1) is a releasing event that follow's

the event Nth(fl, I), and belongs to the same transaction as Nh(, I).

Rclease_ 1 6llows (II, I, J)
I (J & Same trans(I I, I1) & R eleascs(Nth(I I, J))

- 68 -

..*.- .. .' . .I ...

ioIIn op1LC(I I) is true Ii' every join event has a correcsponding lease event.

A leaC C\Ccut corre-Sp)ondLS to a join O'Cent ilT it 1)lOngS it) thle Sai1le transaction as thle

joini e\vent and there are no(Intervening keale events fIm thle samei transaction.

J10111 Colilelte (ti)

V I E Index sct(H-):

if Nth(I-, l).kind =join

then 3 J C Index _set(I-):

eCaVef olOWS(I 1I, 1, J)
& V K E Index_set(H):

ifK(<J

then '-Leave-follows(H, 1, K))

Leavefollows (1-1, 1, J) IS trueI iff Nth(H-, J) is a leave event that follows the

event Nth(H, 1), and belongs to the samne transaction as NthO-i, 1).

Leavef~ t)lows (11, I, J) -
I < .1 & Same_ trans(I-l, 1, J) & Nth(H, J).kind leave

3.7 Serializer Inductioni

II ('I L, at eluster, that Iumplements a data tNype does So b providling operationls

hlat inamIlpu late obljects of' a rep rese ntat ion type. For every al)5t ract object, there is a

representation object. In designing anld \ei~igclusters, It has been Ibund ito be

uiseliil to make tuse of at represcluahion finvawia ni [Gtuttag, I lorom it/ and Mtiusser 781 that

miiust hold for all ob~jects supported by tile ci usier. ThIiis rep reseni(at ion ilma riant shlO d

be itiu whenever a rep reseltionl object is created, and It Sho id I lma in ta inel b\ all

- 69-

i'l- U Q

operations.

To prove that the representation invariant holds, we need to use induction on

the sequence of operations performed. The induction principle we use is that if P is

true at the start of the abstract object's lifetime, and assuming P for an object at the start

of an operation implies that P is true at the end of the operation, then P is true of that

object before and after every operation. As in [Guttag, Horowitz and Musser 781, we

will call this data l'pe induction.

To show the soundness of data lype induction, we need to show that if P is

true of an object after any operation of the cluster, then P is true of the object before

any other operation of the cluster, provided that there were no intervening operations

of the cluster. Informally, to use daa type induction using some predicate P, it should

not be possible for actions of other programs to make P invalid. It is possible in CLU to

write chstets such that data type induction can be used to prove reasonable predicates

about their objects. A cluster with this property is said to have an isolated representation

[Atkinson 761. While the cluster construct is not strictly necessary if one wishes to use

dala type induction, it I'bcilit.tes the determination of an isolated representation.

As presented in this lhesis, the scriali/er construct is quite similar to the cluster

const ruct. Both can implemnClt Abstract t pes, and both do so by manipulating objects

of a representation t1pe thr:ough operations that can have sole access to the

I I. AIso knno as gencralh, induction in lWcgbrcii ,rd Spit/en 761.

-70-

3T"

representation objects. Since serialiters pro~ide the samne kind of recpresentation

prIotectionI as clusters do, We can Use data type Induction, in part. to wAri fy serializers.

We call the application of data type indciItion to histories; seria/izer induction.

For- any complete history H,. seriallier induction can be expressed as:

if

(P(Hlead(I-, 0))
& v U4 C Indlex-set(H):

(if(Gains(I-, I

& P(I Ieadl(H. I-I))

then P(He1cid(FH. J))))

then
v K E lildex-set(H):

if Gains(Nth(H, K)) then P(Hlead(H. K-i))

llie Predicate P is intended to be delined onl finite histories where no transaction is in

possession of the serializer at tlie end of the history.

FHistory induIction is applicableI fo~r in~ serialiter where thle predcicate V~ will

*.hold froml tile event where- possession is released to thle next event where possession is

gained. We can express this condition ats:

-71 -

V IJ E Index-set(EH):

if(Gains(Nth(H, 1))

* & Releases(Ntlh(H, J))
& Nth(Hi, J).node.next Nth(H, I).node

& P(Flead(H, J-1I)))

* I then P(Head(H, 1))

We call this the isolaiion condilion. Julst as the cluster conlstrulct facilitates but. does not

fully enforce an isolated representation, the serializer construct does not necessarily

en force the isolation condition.

T'he serializers we will be specifying and proving satisfy the isolation

condition. lIn view of this, there is no provision inl the histories for- events that occur

external to serializers. We have not provided for situations that we have been Unable to

prohibit in thle programming language, but believe to be bad practice.

An example of serialiizer indu~ctionl is the Use of a representation invariant for

thle FF readers-writers problem presented inl thle previous chapter. A simple

invariant for an object X of type rep lbr any finite history H is:

4 ~ Csi/e(X.r-c, H) =0 1 Csize(X.wc, HI) =0

Wh ile this invariant is not the strongest we canl prove, it is a use liii Property that canl be

proven Simply.

-72 -

As a reminder, the code lbr the read operation is (briefly):

enqueue x.q until crowd$empty(x.wc)

join x.rc; ... end

while the code for the write operation is:

enqueue x.q until crowd$empty(x.wc) & crawd$empty(x.rc)
join x.wc; ... end

In formally, we can prove the invariant by cascs. Filrst, suIppose that we have

CI Csize(H, X.rc) > 0 D Csize(H, X.wc) =0,
C2 Csize(H, X.wc) > 0 D Csize(H, X.rc) =0,

where the history prefix is Understood. Since Csize always results in a non-negative

integer, the condition CI & C2 implies the invariant. Initially, both crowds are empty,

so the invariant is trivially trIti. To prove CI, we assume that CI is trite immediately

prior to some gaining event, and show that it is maintained immediately after nny

releasing event. An examination of the code shows that the only sequence of events

that can increase Csize(X.wc) is where some writer dequeces and joins the writer crowd.

Th'lerefore, the only way that Cl could be litise is to allow sonic writer to deqUeue when

Csi,.e(X.r-c) > 0. H~owever, the guarantee for tile writer transaction prohibits the event

from occurring uintil Csiic(X.r-c) =0. Iherdlbre, CI is maintained. Condition C2 is

proved simlilarly. Iliereibre the invariant is maintained.

-73 -

3.8 Conunents on enter and leave events

One simplification made in the model is based oil the use of enter and leave

events. A reasonable requirement on enter events is that they will occur if they have

been requested. The only requirement that we have on leave events is that they will

eventually occur if the corresponding join has occurred. Yet after completing the

resource operation, the leave event must be requested, since some other transaction may

be in possession. The simplification we have made is not to represent requests for enter

or leave events as separate events.

One requirement that this places on serializers is that code executed while a

transaction has possession of the serializer must terminate, since otherwise a request for

possession could not be satisfied. Termination while in possession is trivially satisfied

for simple serializers.

We have also assumed that there is some scheduling discipline on requests fbr

possession of the serializer so that a request for an enter or leave event will not be

Forever delayed by other such requests. A FIFO discipline on all such requests may be

overly strict in some systems, and we do not require it. Any discipline that guarantees

service to requests I1or possession will be salisriactory. We make no attemp1t to prove this

treq uirement in general.

Adding specific events to the model to indicate when enter and leave events

have been requested is only necessary to rCpresent undesirable cases such as

non-termination while in possession, or a patihological scheduler. Furlher, it is not

- 74 -

4..." * .,** ,._77. . .. "1 ,-

reasonable to include such events in the specifications or proof techniques, since their

order of occurrence is not affected by possession of the serializer object.

3.9 Message passing semantics

The model we have presented in this chapter has been deliberately

incomplete. The larger semantic model we have assumed uses procedure calls and

processes, and is well-suited for describing the use of serializers in a system where

multiple processes communicate through shared memory. While having a certain

intuitive appeal, particularly to those familiar with monitors, the techniques we have

used (and will use) are applicable when a larger programming language and larger

semantic model are used.

In this section we will sketch a model based on message passing. Such a model

has been proposed by various people [Greifand Hewitt 75, Hewituand Baker 77,

Good, Cohen and Keeton-Williams 791. A similar model is used to describe distributed

systems [Svobodova, ILiskov and Clark 79, I.iskov 791. We believe that the structure of

scrializers is quite useful in organizing programs in these distributed systems, and will

address sonic fttrther implications of scrialiers in such an environellnt in oir

conclusions.

In the message-passing model, separate entities conintnicate by passing

messages rather than by sharing memory amlong many processes. Of course, when the

same physical entity receives messages Clotn various sources, the clTct of a shared

memory is achieved. We can think of a scrializer object as one such entity, the resource

-75 -

I.L
r2

.... ... -. ..It ,.~ ~ , J ..,k,,' ' ; r. ' ,,:.(:.t..ll, ,t'-'

object as another entity, and the originators of messages to the serializer as other

entities. In such a model, serializer objects are message switchers: They affect when a

message gets passed to a resource, but not the message itself, nor its reply.

We imagine that serializers are used in a programming language that supports

a logical network, where there are logical sites, each of which has its own local objects.

Each site can communicate with another site only by sending messages to that other

site. We assume that each site can send messages to ainy other site without regard to

physical connections. Unlike physical sites in a network, logical sites can be freely

created at relatively low cost, up to the limitations of the implementation.

In such a logical network, each serializer object is a separate site. Further,

each resource object is a separate site. Instead of saying that a process is executing

scrializer code, however, we say that a site executes code for some transaction. Local

variables are associated with the transaction, and representation components are

associated with the site.

'Ilhe Ibllowing description of the serializer constrlct in a message passing

model gives an outline of an abstract imlplcncntation Ibr serializers. At serializer object

creation, the reprcsenlation object is initialized, and the serializer site waits lbr external

messages to arrive. We describe the scrializer events as Ibllows:

* enter - An enter event represents the acceptance of an initial request

messagc lr service at the seriali/cr site. At this acceptance, a uniqle

transaction identilicr is generaled to name tile transaction that this event
starts. The request message identilics the operation to execuLte, tile
arglncits to that operation, and the destination Ib the reply. A

-76-

destination is a site name and a transaction identifier relative to that site.

enqueue - 'lie euqueue event represents the completion of a series of
actions. First, the transaction identifier, the guarantee, and the
continuation point are placed in the named queue. lien the guarantees
at the head of the internal queues are evaluated to determine the next
transaction to service. If there are ready queues, the serializer site selects
one of them as the next to process and releases possession. If there are no
ready queues, the serializer site releases possession and accepts the next
external message.

tlequeue - After the dequeue event, possession has been regained by the
transaction, the enqueued information has been removed fiom the queue,
and the serializer site will continue to execute code for that transaction at
the given continuation point.

*join - 'he join event also represents completion of a series of actions.
First, the transaction identifier and the continuation point are placed in
the named crowd. lien a message is sent to the resoturce site, 12

requesting the operation and arguments desired. lie message sent to the
resource site indicates the serializer site as tile destination, and also Inmies
the transaction being processed. Finally, as for the enqueue event, the
gtiarantees are examined and possession is released.

* leave - A leave event represents an acceptance of a reply message from

the resource site. Possession is regained by tile transaction named in the
reply. The inflrmination associated with that transaction in the named
crowd is removed from that crowd. Tlhe serializer site continues to
execute code Ir the transaction at the continuation point.

exii - An exit event represents the completion of a series of'actions. First,

a reply Illessage is scnt to the destination given in the enter event. For
simple scriali/crs. diC information in this reply is taken from the reply
received at the leave event. Then ilhe guarantees are evaluatcd and

12. 0r ,,1l1lIiO.l. wc W ,ill aSrme tha the ounly code that can appear in the hod v ofla join Stllcl.nt %ill

k , 11 ,I II cllal~t.ll l u Ila rc~ r~c Ip'era11)7n.

-77 -

. J 1

.4i

possession released, as for the enqueue and join events.

The above discussion has presented a very simple view of serializers in a

distributed system. However, we believe that extensions to this model will not greatly

affect our description of serializer events. For example, we have assumed that there is

no more than one request outstanding at a time, so that the site name and transaction

identifier are suflicient to specify a destination. A natural extension would be to allow

several requests to be outstanding. In such a case, a request number relative to the

transaction can be included in the destination.

3.10 Infinite histories revisited

We noted in our introduction that states can be regarded as equivadence

classes of histories, a view advocated in [Greif75] (although Greif discusses partial

orders of events rather thin sequences of events). However, this approach does not

easily deal with inlinite histories, since the state predicates (such as Csize and Qsi/e) are

not defined on infinite histories. It would be convenient if we could avoid introducing

infinite histories, Nut we have not yet discovered a method that does not require them.

We introduccd infinite histories to niodel what happens to a seriali/cr object over its

entire liletifiie. Some serializer objects are intended to have tinbiounded liiItiimes, even

thotigh iny physicaly reali/able system must have a linite liclime.

- 78 -

I I

.1

If we reject the use of infinite histories, then we consider the specification

clauses to be requirements that all finite complete histories must satisfy. Un fortunately,

this leads to difficulties with showing that the "starving" readers-writers solution could

not satisfy the guaranteed service specifications, since the counterexarmplcs involve

infinite histories where certain events are not required to occur. If the only histories

considered to be complete are finite histories where after the last event all crowds are

empty and no queues are ready, then the starving readers-writers solution can be

proven to guarantee service. The system designer who relied on this proof would be

unpleasantly surprised to discover that starvation actually occurred under heavy loads.

-79-

4. Specification language

One method of specifying a programming language is to provide rules for

translating programs written in that language into functions on some mathematical

domain. This method can also be applied to specification languages. The specification

language for serializers is composed of clauses in which certain relations between

serializer events imply other relations between seralizer events. The meaning of

specification clauses is given by stating rules for transforming the clauses into

specification predicates on h istorics.

Serializer code is said to meet its specifications if every complete history that
can be legally generated by the serializer code (according to the partial legality predicate

discussed in the previous chapter) satislies all or the specification predicates that result

fRom the specification clauses (br that serializer code.

It is nol our intention to require that the specilication language have sifrlicient

power to define abstract data types. We are only concerned with specifying

concurrency control. We believe that the difficulhy or arriving at good specification

methods dictates hat we attack a tractable problem, and intcgratc the varions

approaches as they are suficiently well understood.

In this chapter we discuss the kinds of seriali/er specifications supported, and

present the syntax and semantics of the specification hnguage. Then we give a 1il

specification 6or the FIFO readers-writc.s seriali/er, some spCci Iicat lions fir variations

on the readers-writers problem, and a partial specification 16r the hounded huriflr

-80 -•r

. -. , - . : , .,,,.. . , ,

problem.

4.1 Kinds of serializer specifications

The specification language is a notation for requiring a serializer abstraction to

have certain properties. These properties are classified as:

* Exclusion - where one kind of access excludes another, such as readers
excluding writers in a simple data base. This kind of specification is
necessary to prevent concurrent requests from interfering with each
other.

Priority - where one transaction is served preferentially over another.

This may occur because of the order of enter events, the kind of
transaction, or other reasons or combinations of reasons.

* Concurrency - where some accesses are required to be served

concurrently. The presence of concurrent processing for requests often
affects the performance of system, and may even affect the correctness.

* Service - where some (or all) accesses are required to run to completion

(analogous to requiring termination for sequential programs).

We make no claim that all interesting synchronization properties Ill into the above

categories, although many do. We also Iake no claim [hat all properties in (he above

classes can be expressed in the specilication hlaguage, or that tile specifications are

especially concise in our language. 'lhc classes we ha% e chosen are not necessarily

distinct: somc properties may be considered to be in more than one class. We are more

interested in making the specification langtage usable by both programiners and

verification systems than attaining some kind of lfhrnlal completeness.

-81 -

_ ;19.2

Thie specification language has nothing to say about perlormance, either for

real tinie, computation time or storage. Although perlormance characteristics can he

inferred from some of our specifications, specifications and proofs of performance are

beyond the scope of this thesis.

The simple form of the specification language does not deal with the values

passed to or fiom serializer operations. This simplification has been made to avoid

discussing what the exact meaning of "value" is in the language. The form of the

specification language in this chapter has events, nodes, boolean and integer valuCs. We

also include limited predicates on these values, and simple arithmetic expressions as

functions on integers. It is possible to extend the specification language that the user

sees to include firther values and functions, but such extensions involve more of the

semantics of the complete programming language than we wish to handle in this the ;is.

In the next chapter, certain extensions are made to the specification language to support

our verification tech niques, but these extensions are still quite limited, and do not

support user-dcfined values and fitnctions.

-82 -

_____________ll i lt '. >',.l , ; l: !; , 4;;7 l li

4.2 Specification language

'The specilication language is defined by specifying a mapping from

specification clauses to unbound specification predicates. Each unbound specification

prcdicate takes a symbol map and a history into a boolean that indicates whether the

specilication clause is satisfied for that symbol map and that history.

A symbol map is a function from event symbols to events, and from node

symbols to nodes. It provides an interpretation in our semantic model of the symbols in

the specification clause. A 'alid symbol map provides a consistent interpretation of

symbols for a given history, and will be discussed fLirther later in this chapter. The

symbol map is an important distinction between the specification language and the

definition language.

Fach specification clause defines a specification predicate, which maps

histories to boolean valties: true if the clause is satisfied for that history, and False if it is

not. "l1wc specification predicate for a clause is the value of the unbound specification

predicate fbr that clause taken over every valid symbol map for a given history.

- 83 -

I .~W, ,,.,, . U,

4.2.1 Sylllax of specificatioiI language

Flie specification language has a simple syntax. Tle specifications for

serializer code are expressed as a set of claiuses, each clause being expressed as an

implication. The syntax of the specification language is given informally below, issues

of parenthesization and precedence being neglected.

Clause = Clause "D" Clause
Ordering clause
Clause "&" Clause
Clause "I" Clause
"-" Clause
"GX .(" Eventsymbol "," Eventsymbol ",' Node symbol ")"

"GX .(" Event symbol "," Eventsymbol "," Event symbol ")"

"@" Event_symbol

Expr OrderOp Expr

Ordering clause = Eventsymbol "<" Eventsymbol

Eventsymbol "K" Orderingclause

Orderop = "<"1">" I"I" " "=" I "

Expr literal

Expr "-" Expr

Expr "+" Expr

IExpr "" [xpr

I Expr "I" Expr
"#" Eventsymbol

An event sylinbol (Event symbol abovC) is Writ 11 by writing a transaction

s,;inhol 1llowcd by the evcnt kind lodlowed by optimlnal inlortuatn indicating other

Conplonenls of the cvcnt (with ojl)ional digits IN- fLIrther diSanl hiLilaltion). A

lransaction S)Ilnbol i s wriitcn b) giving the Iirst letler of the olpcralion 1ilnlC (or enough

lettcrs to bc Ui nali higuultis) Ilollowcd by optional digits if more tlhan one transaction fIr

- 844-

- - " . .. '

that operation is needed in the clause. Examples of event symbols for an operation

whose name starts with X' are:

X-enter: This symbol denotes an enter event for transaction X. By

convention, if there is only one transaction appearing in a specification
clause for the operation, no digits are necessary in the transaction symbol.
Il-here can be only one enter event for any transaction.

X-join: This symbol denotes a join event for transaction X. For simple

serializers, this join event is associated with perlbrning the corresponding
operation on the resource. Also, for simple serializers, we are limited to
having one join event lbr any given transaction.

XI-exit: This symbol denotes an exit event for transaction XI. Note the

use of the digit '1' to indicate a transaction that is distinct from X (or X2).
By convention, we give different transactions different digits in
specification clauses where more than one transaction for an operation is
mentioned.

* X2-enqueue(s.q): This symbol denotes a enqueue event for transaction

X2, where the queue denoted by %q is used.

A node symbol (Node-symbol above) is written by giving the first letter(s) of

the transaction name, followed by a "", followed by the event kind. For example, the

enter node lbr operation X is written as X*-enter. Any further information given is the

same as the corresponding event.

-85-

- ---- ---- ..

4.2.2 Semantics of specilication language

We first must describe the domains over which the specification langLiage is

defined. 13 The syntax given above mentions event and node symbols, but does not

explicitly demand that the symbols apply to a single serializer. Therefore, we need to

limit ourselves to nodes and events chosen from some particular serializer, S. We name

these domains (and representative elements) by:

n E NS -- node symbols for S

e E -- event symbols for S

c E CS -- specification clauses for S

x E -- expressions for S

Note that we have provided single character names for sample elements of the domains.

We will follo . the leading character convention used in naming events for naming

elements of these domains in the later equations, including using trailing digits where

more than one element is desired.

The semantic domains are those domains described in the previous chapter on

the semantic model.

n E Ns -- nodes Ibr S

eC E -- events lbrS

13. Allhotgh [lie dcnolat io al I(lRhiod Iused ill this thesis it) dcltl tile spec ificationl lang.ige owes llutid
it) work h Scott and Str.iclie IScolt and SrIlche 71. Strachey inld Wadsworth 741. tile dotmains we use
are similfly sets. n1ot lattices.

- 86 -

_at =1_1.1-E

11 E HS - complete histories for S

(HS: lilt -> ES)

In specifying thle meaning of the specification langUage it is necessary to

provide a symbol map that takes node and event symbols into their meanings. We will

discuIss this function-at greater length below.

p E PS: maps symbols to events or nodes

(PS: NS U ES-> (Ns u ESP

The following Functions take syntactic values into semantic values. We say

that they define the mneaning of the syntactic construLcts in the specification language.

We have avoided parsing and precedence issues to more clearly present these functions.

Note that the braces "I I" are used to bracket syntactic constructs and distinguish them

from the semantic expressions.

E(Iejp) -- event corresponding to e in map p

E: (FS, PaS) -> F

N n J,p) -- node corresponding to ni in mnap p

N: (NS, Ps)-> NS

C(ICI,p,hl) -- ValidIity ofspeci lication Clause c ill map p. history 11

(true ifc is saifed, lhilse if not)

C: (Cs. 1)~ S. V) -> lk)ol

X(I x I~p,h) -- value ol eXpressioll in iiiap p), history hi

(anl integer value)

-87-

X: (Xs, PSI [is) -> [fit

0(1 opj ,) -- binary predicate corresponding to op

(Op = 1 <, >, <, >, =,*1

0: Op -> (((tnt, I nt) -> Boot)

'Re definition of C(IC,p,h) for specification clause C is given below by cases.

C({el < e2j,p,h) = Precedes(E({ell,p),E(1e21,p), h)

C(clI & c2 1,p,h) = C{cl1,p,i) & C(tc2j,p,h)

C(c1I I c2 1.p,h) = C(Icl }.p,h) IC(4c2j[p,h)

C(I -cl,p,hl) =. -C({c},p,h)

C(IGX(el, e2, n)j,p,h) E XCIludes node(Iel lp), E({e2ip), N({n,p), h)

C(IGX(el, e2, e)l,p,h) =ExciLudes(E(4e1llp), E(le2 l,p), E(IeI,p), h)

C(I @"ej,p,h) =OCCLurs([(jell',p), h)

C(xlI op x 2 ,p,h) =0(IopI,p)(C(Ixll,p,i), C(1x21,p,hi))

-88

T(he definition ofX({x I,p,h) is given below by cases:

X(4x1 + x2},p,h) = X(Ixl },p,hi) + X~jx2[p,h)

X(fxl -x2),p,h) = X(IxII,p,h)-X(Ix2j,p,h)

X(I*x2~ph) = X({xIj,p,h)*X{x21,p,h)

X({xl/x2},p,h) = X({xl1,p,h)/X(Ix2j,p,h)

X(literaII,p,h) =conslani

X({ # e 1,h) = Rankfht (el,p))

As a notational convenience, the clause "El (E2<(E3" is equivalent to

"El < E2 & E2 < E3'. Longer clauses of the same formn are defined similarly.

Some examples of specification clauises follow:

XlI-join < X2-join D X I-leave < X2-join

'lliis clause mentions two transactions, X I and X2. 'l'he intention is
to specify that having transaction X I access thie resource prohibits X2
from accessing the resource.

(IX-enter D @?X-exit

Th1is clause is a speciflication of service for transaction X. 'h
occurrence of the Venter event implies that the X-exit event occurs
ill anly Complete history.

@0G-enter & (#0-enter < #13-eier) D @0G-exit

If the enter event For tranlsactionl C curs, and the rank of 0-enter is
not greater thian the ranik of the euler event R~r transaclion 1). tlien
the exif event brn I ranisaction G must occuir. In (slightly) more
int ii ive ternms, a I railsactionllbr operation Gi is only required to

receive service if there are at least as mlany t ransactlonls For operation

- 89 -

P as transactions for operation G.

4.3 The symbol map

Mapping symbols in the specification clauses to mathematical entities is a

necessary part of translating specification clauses into functions on histories. It is

necessary to map event symbols into events, node symbols into nodes, and syntactic

expressions into their value domains.

The meaning of a specification clause is taken to be a predicate that, given a

history, returns true it a history satisfies the specification, and false if it does not.

Serializer code is said to satisfy a specification clause if, for every complete history and

every valid symbol map for that history, the specification predicate defined by that

clause is true for the history.

A valid symbol map for serializer S must satisfy the following restrictions:

* Distinct event symbols must map to distinct events, and distinct node

symbols must map to distinct nodes.

* Event symbols must be consistent with node symbols. For example, the
event symbol "R-enter" must map to all eent that is consistent with the
nlode symbol " Rl,-tcr".

* veint and node symbols Ilp to evelns and nodes that are consistent in

kind to the symbol kinds. I-or exalple, the node sylibol "R*-enlter"
must inal) to a node that is an enler node in the scriali/er S.

- 'Al-

I1

*Event and node symbols map) to events and niodes that are consistent inl

transactions to thle tranacin symbols. [or example, thle event symbols
"R I-enter" and "RI -exit" must map to events with the same transaction.

EvKent symbols mentioned in ordering clauises (H] < F2) and GX clatiscs
(GX(F1. F2, F)) must map to events that acitually occur in the history.

C Fvent symbols mentioned in rank expressions (#EF) and occurrence
clatuses ((@!F) need not occur in thle history.

"I'he last restriction on symbol maps needs flurther explanation.Th

motivation for- introducing it is to keep specifications of order separate lrm

specifications of service. For- example, suppose that we are attempting to specify a

readers-writers seriali/.er where writers are given priority over other writcrs solely on the

basis of when enter events occurred. To do this, we use the f'ollowing specification:

WlI-entcr(< W2-enter D WI-eXit < W2-exit

However, if the last restriction does not hold, and we thereflore allow symibol mlaps

where thle events corresponding to WI-enter and W2-enter occumr in the given order for

Some history, buit either of thle events corresponding to WI-exit or W2-exit have not

o)ccurredC(, then the speciflication clause will have a mnuch different meaning. If the event

occu rrence is opt inal for tilie symbol map, then a serial i/er will sat isfy fixhe clatuse ifilhe

given order holds, and the serializcr guiaranltees service to writers, but no(1 if' writers call

starve. In this ratlher suIrprisinlg way, a priority speciflication has implied a serv ice

speciflicat ion.

We believe that keeping the specification of order separate fromn the

specification of service simplifies both specifications and proof's. Therefore, we have

required that a symbol map is valid for somne history only if an event symbol in an

ordering or GX clause maps to an event that actually occurs in the history.

4.4 Readers-writers specificatiouns

Our first examples deal with the readers-writers problemn. In this problemn, a

serializer abstraction should allow con1current access to a simple data base for

transactions that simply read fr-om thle data base, but should not allow transactions that

write to tile data base to overlap, since that could destroy the integrity of the data.

Trhe same excIlusion specifications apply to all versions of thle readers-writers

problem.

* Readers exclude Writers - A reader accessing the resource prevents a
writer fromi accessing tlie resource.

R-join < W-join D R-leave < W-join

* Writers exclude Readers - A writer accessing thle resouirce prevents aI
reCader Fronm accessing" the reCsouIrce.

W-join < R-join D W-leave < R-join

*Writers exclude Writers - A writer accessing tile resource prevents

WNI -join < W2-join D WV -leave < W2-joinl

-I -92 -

For the FIFO readers-writers serializer shown in Chapter 2. the priority given

to a transaction is based o11 when it arrived with respect to other transactions. We

expect strict FIFO ordering between readers and writers, and between writers and

Ariters. Strict priority between readers is not required, becauise readers may access the

resourc con1currently. Therefore, we have the following priority specifications:

* Readers not pre-emipted by writers.

R-enter(< W-enter D R-join < W-join

* Writers not pre-enipted by readers.

W-enter < R-enter D W-join < R-join

*Writers not pre-empted by other writers.

WI-enter < W2-enter D WI-join < W2-joiii,

The above priority specifications only require the order of requests to be preserved

From enter events it) join events, not from leave events ito exit events. If the order or

erice atters after the resource oIperation is pelIrfrmed, then we would include the

following clauses:

L R-enter < W-enter :D R-exit < W-exit

W-enter <kR-enter D -exit < R-exit

W I-enter < W2-criter D W I-exit < W2-exit

-93-

In the readers-writers case, we specify coricurrcncy for readers by the

following specification:

GX(R I-enter, 12-enter, W*-enter) & R2-enter < RI-leave

D R2-join < Ri-leave

This clause is interpreted as requiring that for any two readers, RI and R2, that enter

the resource without a writer entering the resource between RI and R2, if R2 enters

before RI has completed accessing the resource, then R2 will begin to access 1hC

resource before RI completes its access

We cannot require that two readers are actually concurrently executing

resource operations, since actual concurrency may depend on the scheduling policy

followed on a multi-processed machine, or on the relative speeds of two processors if

the requests are executed by separate machines, or on further conicurrency limitations

imposed by the resource. The kind of specification that we must settle 16r is to require

that both requests are sent to tie resource (in join e\ents) before either reply fiom the

resource is acknowledged (in leave events). A concurrency specilication only requires

tie opportunity for concurrent execution, unhindered by the seriali/er.

r The specilications of service 1br rcaders and writers are simply Ihat Ior every

enter event there should he a corresponding exif cvent, and that this should hold for

both readers and writers. 'l'he spccilicauion clauses are:

O'R-enter D OUR-exit
('1W-enter D (@W-exit

-94-

4.5 Variations of tie readers-writers problem

Other versions of the readers-writers problem exist [Coti rtois, Ilcymans

and Parnas 71, Greif 751. Aside from differences based on the programming language

used, the versions differ mostly because of the kinds of priority they give to readers or

writers and the presence or absence of starvation.

Ihe simplest priority specifications often conflict with other specifications.

For example, stuppose that the person specifying the serializer wants to give writers

priority. The intention might be: "whenever a writer enters a serializer before a reader

has been serviced, the writer should be serviced before the reader." This specification

can be written as:

W-enter < R-join D W-join < R-join

Further, we can write serializer code that will realize this specification. Unfortunately,

if writers arrive at the serializer at a sufliciently high rate with respect to the length of

time the resource$write takes, readers can be indelinitely prohibited from joining the

resource. This would conflict with lie guaranteed service requilement given above,

since there can be no specificaiion that prohibits writers from arriving at the resource.

A mole reasonable specificatlol of writer's priority is to require "if la reader

and a writer enter the scriali/er while a particular other writer is being serviced, then the

writer will he serviced before the reader." [his specification can be written as:

95 -

!_4

(",I -join1 < W?-enter W WI -leave &W 1-join < R-enter (W I-leave)
D \ijoin < R-join'11I Nh'I hs p i diOn doCs 1101 c0nlliCt With our ser-vice specificat ions. Regardless of thle

number)Cl Of IAliter-S that en~ter While reCSOUrce$writc is being performed for- WI, thle

readers , at entered in that period need not be delayed for- any writers arriving after

that period.

'11e guara ntcd conctirrency specCilhationIs May also diffier fr-om serializer to

serializer. We may WISh1 to r'equLire for thle readers-priority serializer that all readers that

eniter while at writer is accessing the resource will be allowed to concurrently access the

resourc. -This specification can be written as:

(W-join < Ri-enter < W-Ieave & W-join < R2-enter < W-Ieave)
D (R2-join < Ri-leave & R I-join < R2-Ieave)

'1ihis clause requires that. for every pair of readers, RI and R2, entering the serialiter

while a writer is accessing the resource, that both readers begin to access thle resource

beMore either reply is acknowledged.

______96_

NE *. vw-;a 4

4.6 Botiidcd Buffer Speciflecitions

14The bounided bui.01er problem is based on operating system 1/0 buffering.

We aSSum[Ie that there is a IprodUcer of' in formation, and a conisumer of information.

T-he produicer issues put requeCsts to t-he system-. to Pass theC inlform-ation to the consuimer,

anid the conlsumer1 issueCs get requests to obtain the itemrs of Information from the

system. Ini order to allow both producer and con1sumer~l to operate in parallel, the system

provides a bounded buffer of length N to store items of information that the producer

has delivered to the system before the consumecr has requested them. The producer can

proceed as long as it is no miore than N items ahead of the consumer.

We have somewhat generalized the probleni by allowing mul.1tiple consumer

anid produlcer processes for each bounded buifI~r. If the producer conlsists of several

processes, then each process can proceed Lintil it performs a put request where the

request is made onl a ILi I bulffer. Similarly, each consumerir process can proceed until it

per-formis a get request on anl emipty buffer.

We assume that the resouirce acts as a hotinded sequceC of in formlation

itemls, 15 where the sequence Cannot be more than N litems lonig. The pull operation1

1111e)CMS an1 itemi to theC head oftlI heseq tien1ce. while get opeaion-Il(remloves an iteml fRom

[lhe [ail of the seq uencc.

14. A Iiolilor aIpproach to dtlii proleiii appCii\ t" i h1lward 761. Scriialier code for this prohktii
11ipe)CII\ ill fic .Ij)(1cliiI o I is 111C~,'. 11i!s, lid isc d illo l (f ir -lso s
15. AlIlhotigli (is kill(o sequcice r, iko kiio~ ai ak licicl. Av ,1oid [lie' tIC (1*olei-icli (o di'1liigiii~ll
)C %CCII Vtcu i t I q Ct Ik:, ti~c I h 11 'cil,C i od I.IIIVI h V 'S-I V I I I d I ig. 1111 (I t tic tc m d for IthIe d, ta.

-97 -

A08R S85 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE--ETC FIG G/2
AUTOMATIC VERIFICATION OF SERTALIZERS.(U)
MAR So RfR ATKINSON NCOOI47-C?-0661

UNCLASSIFIED MT/LCS/TR!229unuuuunIIIIu
m i hhEE'E

lEE~llIIhllEEE
EIIIIIIIIIIIu
EIllhEllllIl
EEIIIIIIIIII

EEEEllllhI

1111.0 _ 28

II1!1 --!oil
40 11112 .

I~ IL25 1.4

MICROCOPy RESOLUTION TEST CHART
NAI;ONAL BUREAU Of STANDARDS 1963-.1

The following specifications are conditional service specifications for the

bounded bufTer problem.

((#G-enter + N > #P-enter) & @P-enter) D @P-exit

((#P-enter > #G-enter) & @G-enter) D @G-exit

The G-enter event is the initial event of some get transaction, and the P-enter event is

the initial event of some put transaction. We require that the P transaction complete if

there have been enough G transactions to use the data, or if there is sufficient room in

the buffer to store the data. If the G-enter event is the i-th event using the G*-enter

. node, and the P-enter event is the j-th event using the P-enter node, then P must
complete ifj _ i+ N. Similarly, we require that a G transaction complete if there have

been enough P transactions started to supply the data. T'herefore, G will complete if

i<j.

Note that the above specifications need to use @0)G-enter and C@P-enter

because we only automatically require events appearing in ordering specifications to

occur in the histories. "'ibis choice was made based on the convenience of writing

certain examples. To illustrate, if the use of #G-enter required @G-enter, then the

specification of service for P transactions above would have been written as two clauses:

(-@01G-cnter & (# P3-enter < N)) D @&P-exit

4 (#G-enter + N > #l)-cnier) D @OP-exit

-98-

.* 4

Another specification of the bounded buffer problem is that the order of get

Irequests and put requests cannot be interchanged, either in forwarding the request to

the resource, or in returning the resuilt. These specifications are similar to the FIFO

readers-writers priority specifications.

01-enter < 02-enter D (G i-join < 02-join & 01-exit < G2-exit)

P1-enter < P2-enter :) (PI-join < P2-join & P1-exit < P2-exit)

We have chosen the exclusion specifications to be quite simple: accessing the

resource is exclusive. 'The exclusion specifications are expressed by the following four

clauses.

C3l-join(<G2-join :) I-leave(<02-join

0-join (P-join :) 0-leave < P-join

P1-join < P2-join :) P1-leave < P2-join

P-join <0G-join :) P-leave < 0-join

We have said that the serializer operations should, as Ijir as practical, have the

sai effect as the resource operations. In (lie bounded buffYer problem, the serialiter

operations have the same effect as the cluster operations prov~ide'd that the cluster

operations return normally. In executing a Put operation for the st.rializer, if (here is no

flK)m in the bouinded huller ror the item, the oper-ation pauses until there is ro). In

executing a gel operation, the operation will niot proceed antil an item is available. For

the operations of* the resource, however, an exception is signalled if there is no rniii in

-99-

the bulTer when executing a put operatio n, or if no item is present when executing a get

operation, The signals of the resource operations have become the non-terminations of

the serializer operations. This raises the question of how well we have separated

concurrency control from data access. We will discuss this question in the conclusions.

We have presented the bounded buffer problem as an illustration of the

specification language and as an example of a serializer that is slightly beyond simple

serializers. We will return to this example to illustrate how we can perform extensions

in the program proving domain as well.

I

- 1(K) -

I. M '.. -

5. Verification Rules

In previous chapters we have used a definition language based on first-order

predicate calcuhls to give the meaning of both the serializer construct and the serializer

specification language. In theory, we need nothing else to verify that a serializer meets

its specifications. In practice, a certain amount of intermediate work is necessary.

We have chosen to build a verifier that operates in a restricted domain. The

verifier applies rules that are specific to this domain to data it has describing a serializer

and specifications for that serializer. 1'his chapter states and proves those rules. Our

choice of rules is based on their utility in verifying a number or variations of the

readers-writers problem (these examples are presented in the next chapter). No claims

will be made for their completeness. Other classes of problems would most likely lead

to different sets of rules, although we would expect most such rule sets to have

substantial intersections with the set we have chosen.

In this chapter, we firtm argue that proofs can be reasonably performed in an

extended specification language. We then state and prove a number of verification

rules expressed in the extended specilicafion language. 'Iliese rules are used in a

program that perfornis atltoimatic verification of scrializers, to be discussed in the next

chapter. A method for proving service specifications is then presented that is partially

based on these rules, and its correctnes argued. To illustrate the use of the verification

rules, an example of a rule-based proof is given. Finally, certain weaknesses of our

methods are examined.

-- 10

5.1 Proving in the specification language

In proving that a serializer meets its specifications we start with the text for a

serializer and a number of specification clauses. In proving that serializer code meets its

specifications we need to state intermediate propositions about the serializer code and

the specifications. To do so we need a language to state the propositions and rules of

inference that can be used for the language.

One candidate for such a language is the dialect of predicate calculus that we

used to define serializer semantics. If we used this definition language as the proof

language of the verification program, then we would be faced with the following tasks:

translating specifications into their meanings, reasoning in the definition language

about propositions expressed in the definition language, and translating the results into

some humanly readable form. The translation from specification language into

definition language is relatively easy: we have already described it in the previousi

chapter. The translation Irom definition language into specification language is more

difficult.

We considered it to he preferable to carry out our reasoning, as far as

practical, in the specification language. It is the language that the user is most likely to

understand. Further, we find that most of the inference rules are easier to state and

*l manipulate in the specification language than in the definition language.

I

I
- 102-

-I

The verification program can be simply viewed as a data base about the

serializer code, a set of algorithms that are used to examine and modify the data base,

and a set of specification clauses to prove about the serializer. The data base can be

expressed as a set of node graphs representing the serializer operations, and a set of

assertions about the serializer, expressed as specification clauses. The algorithms are

largely rule-driven, where a rule is used to infer a specification clause from known

clauses. The rules we present in this chapter are treated as axioms by the verification

program; this chapter states and proves the rules.

5.2 Extensions to the specification language7 1
As it stands, the specification language presented in the previous chapter is

oriented towards describing external properties of serializers. It has no constructs for

describing the internal structure of a serializer. The rules we define in this chapter

require a means for describing the node graphs for the operations, and relating events

to the node graphs. 'therefore, we propose extensions to the specification language.

-113-

5.2.1 New symbols and clauses

The extensions to the specification language pose no special problems. They

extend the domain of discourse for the language to include symbols that can represent

any event (or node), and to include components of events and nodes. For the sake of

simplicity, we will not formally define these extensions, although we could do so.

* general event symbols - E, El, E2.... arc event symbols that can be

associated with any serializer event through the symbol map.

* general node symbols - N, Ni. N2,... are node symbols that can be

associated with any %erializer node in the node graphs.

* extended expressions - E.trans, E.node, E.kind are added as expressions
that represent the components of events. N.kind, N.next, N.expr, and
N.mob expressions are also added. An extension to the domain of
expression values to include events, transaction identifiers, nodes,
syntactic expressions, and node kinds is necessary. We also include
literals for node kinds.

*GX (Guarantee Exclusion) specification extensions -
GX(Node, Node, Node) is added as a syntactic form. lie function
Node.excludes node is used as its meaning. GX(N!, N2, N3) expresses
the restriction that no transaction can execute N3 while some other
transaction is executing between N I and N2 (inclusive).

13IX (Possession Exclusion) specification clau.ses - We use

I'X(Node, Node) clauses to represent possession exclusion. PX(N 1, N2)
expresses the restriction that no transaction can execute any node while
some other transaction is executing between N I and N2 (inclusive). We
will define the meaning or PX clause% below.

- 104-

5.2.2 Marked and unmarked events

fIn defining the verification rules in this chapter we have occasionally found it

necessary to write ordering clauses where one or more of the events appearing in those

clause are not required to occur. To achieve this, we introduce the notation

I1E

to indicate a marked event symbol in the specification clause. We then modify the

definition of a valid symbol map to require that all unmarked event symbols appearing

in ordering clauses and GX clauses must map to events that occur in the complete

history for which the map is defined. In all other respects, a marked event symbol is the

same as an unmarked event symbol.

The alternative to introducing the !F nctation is to nol require a valid symbol

map for some history to take event symbols appearing in ordering and GX clauses into

events that must occur in the history. We would then explicitly require the use of @E

to require event occurrence in clauses where such occurrence was important. We have

previously rejected such an approach because it leads to surprising implications for

some specilications. We believe that it is still the right choice' we prefer to have some

additional complication in the language for delining the verilication rules so we can

retain some simplicity in the specification language at the user level.

We note here that the Precedes predicate used to give the meaning of'ordering

clauses is well-defined even when the events do not occur in the historics. Note that the

clause

- 115 -

!E1 < !E2

can only be true for some history if both events denoted occur in that history. This can

be stated as the clause:

!E1 < !E2 D @E1 & @E2

Also note that if an ordering clause mentioning two events that need not occur is false,

it could be due to either the opposite order holding, the two events being the same, or

non-occurrence of either event, as is expressed by:

-(!El < !E2) D (!E2 < !E1) I -@E1 I -@E2

5.3 Some simple inrerence rules

In this section we present proofs for several inference rules stated in the

specification language. These rules are presented as specification clauses where one

sub-clause implies another. Note that the rules are actually rule generators: free
variables are permitted to appear to denote nodes and events. "llie 'ree node symbols

are chosen from the set I N, N 1, N2...., and the free event symbols are chosen from the

set {EI, 2, ...

- l00-

1• 1~ - I

5.3.1 Transaction order

Events belonging to the same transaction must occur in the order prescribed

by the node graph for that transaction. We can write this restriction as an inference

rule:

Transaction order rule:
El.node.next = E2.node & El.trans = E2.trans
D El <E2

Proof: For every valid symbol map p and complete history h, since El and E2 are
mentioned in an ordering clause, p maps El and E2 to events that occur in h.
Therefore, there must be events el. and e2 (with indices I and J), such that the
above rule is equivalent to:

(el = NthOh 1) = E(I El Jp)

&6= N th(h, J) = E(I E2 J,p)

& SamejIrans(I, J, h)
& el.node.next = e2.node)

DI<J

Since an enter node can not be the next component of'any node, e2.kind *enter.

'Iblerefore, by the definition or I egal transactionustep. there must Ibe sonie index

K E I ndex-set(h) such that

(K(<J
& NIh(h, K).node.next = e2.node

& Nth(h, K).trans =e2.trans)
Further, K =I by L egal-transaction-step. which proves that I < J.

-107 -

5.3.2 Transitivity

The event ordering is transitive. This can be expressed by the following rule:

Transitivity rule:

(E1(< E2 &E2(<EF3) DEl(<E3

Proof: By the definitions given in chapter 3. the above specification clause is defined to

be equivalent to:

(Precedes(E({El ,p), EQ E2 J,p), h)

& Precedes(E(I E2 1,p), E(1E3 1,p), h))

D Precedes(E(I El 11,p), E(f E3 },p), h)

where p is any valid symbol map for the conmplete history h. By the definition of a

valid symbol map, there must be three distinct events (el, e2, e3) that occur in h,

which implies that there are three distinct indices (1, J, K) such that the above rule

is equivalent to:

elci Nth(h, 1) = E(I ,p)

"&e2 = N th(h, J) E(IFE2 [p)
" 0 = Nthi(h, K) E(E3 I,p)
& Precedes(elI, e2, h) & Precedes(e2, e3, h))

D Precedes(ei, e3, h)

By the dlefinlition olf Precedes and the existence of the indices I and J,

Ilrecedes(el, e2, hi) is equivalent to I < J. he other Precedes expressions have

similar simuplicafions. 'I hecrelbre, (lie specifjication clauise is equivalent to

(Il<J &J(< K) D(I < K)

which is true by the axiomns or integer ordering. T herel'ore, the specifIicationi clause

is a truie statemen~ft.

108 -

. A

5.3.3 PX clauses

A PX clause is used to specify possession exclusion. The meaning or a PX

clause is given by:

C({ Pfl} ,p,h) = PX-deI'(N(nIl Jp), N({ n2},p), h)

where

PXj-deRN1, N2, H)
V I,J,K E Indexset(H):

if(Nth(H, l).node = NI & Nth(H, J).node = N2
& Same_trans(H, I, J))
then Excludes(Nth(H, I), Nth(H, J), Nth(H, K))

The clause PX(N1, N2) specifies that a transaction executing nodes NI and

N2 has possession (of the scrializer containing NI and N2) after executing NI and up to

the completion of executing N2, and that NI.next = N2. Note that while a transaction

has possession no events from another transaction may occur. There are two rules used

to imply PX clauses:

PX from gain rule:
(Nl.next = N2

&(Ni.kind = enter

I Nl.kind = dequeue

I N 1.kind = leave))
D PX(NI, N2)

- 109-

*1

PX from PX rule:
(PX(N 1, N2)

& N2.next = N3

& N2.kind join

& N2.kind enqueue)
SPX(N2, N3)

Proof: By contradiction. For the first rule, suppose that the precondition implies

--,PX(N2, N3). By the definition of a valid symbol map, there must be three

distinct events (el, e2, e3) that occur in any complete history h, which implies that

there are three distinct indices (I, J, K) such that:

el = Nth(h, I) & e2 = Nth(h, J) & e3 = Nth(h, K)

& el.node N({ N I J,p) & e2.node = N(N21,p)

& el.trans e2.trans & el.node.next = e2.node

& (el.kind = enter I el.kind = dequeue I el.kind = leave)
& -Excludes(el, e2, e3, h)

At the finite history Head(h, I), which is the smallest prefix of' h that contains el,
we know that Legal step(Head(h, I), e2, S) is true (where S is tile set of node

graphs for tile scrializer operations). Further, because Busy(Head(h, I)) is true (by

the definition of Busy and Gains), e2 is the only event that is a legal step.

Therefore, no events can occur between el and e2, which contradicts

-Excludes(el, e2, e3, h). 'l'herelre, the PX from gain rule is trtue. A similar proof

holds Ibr the PX from PX rule.

The PX clauses are useful as intermediate steps that imply event ordering.

The Ibllowing rule is used to imply an event ordering from a PX rule and other

preconditions.

t - I lO-

-2 '- ' xa '--. . a,* --. D , , . r - . .. "

Event before PX rule:
PX(NI, N2) & E < E2 & Eltrans =E2.trans

& El.node = NI & E2.node = N2)

J E(El

Proof: The above clause is equivalent to the following (for every valid symbol map p

and complete history h):

(PX-deR'N({Nl },p), N({N2},p), h)

& Precedcs(E({ E},p). E(E2 },p), h)
& (El },p).trans = E(E2},p).trans
& E({ E I,p).node = N({ N I ,p)
&E({E21,p).node = N({N21,p))

D Precedes(E({ E},p), E(El J,p), h)

Because E, El, and E2 are mentioned in ordering clauses, there must be three

distinct events (el, e2, e) that occur in h, which implies that there are three distinct
indices (I, J, K) such that, by the definition of PX_def:

(el = Nth(h, I) = E({ El ,p)

& e2 = Nth(h, J) = E(E21,p)

& e = Nth(h, K) = E(Elp)

& Precedes(e, e2, h)

& Excludes(e1, e2, e, h))

which implies Precedes(e, el, h), which implies that the rule is true.

i - Ill -.

jj

ibe other PX rule is qLlite similar, and can be stated as:

Event after PX rule:

(PX(NI, N2) & El < E & El.trans = E2.trans

& El.node = N I & E2.node = N2)

D E2 < E

Proof: Similar to proof for Event before PX.

5.3.4 GRE clauses

1lhe GRE (Guarantee Requires Empty) clause is an intermediate step used to

infer GX (Guaranteed Exclusion) clauses. The definition of the GRE clause is:

C(IGRE(NI, N2)1,p,h) = GRE_deRN(I N I,p), N(UN21,p). h)

where

GRE_deRn1, n2, h)-
V I,J,K E Index_s5t(h):

if(Nth(h, I).node = n2
& Nth(h, J).node = n2.match

& I <K <J
& Same-trans(h, 1, J))

then -Fvti(Head(h. K), nI.expr)

IlIC intuitive meaning oI GRF(N 1, N2) is that the queue or crowd denoted by N2.mob

must he empty in order Ir the expression N l.expr to be true.

*-A112-

: -1

Thlere are two rules that can be uised to infer GRE clauses:

GRE rroni empty rule:
NI.expr = Empty-expr(N2.mob)
D GRE(N1, N2)

GRE rrom expression rule:
(N 1.expr =And-expr(Enipty-expr(N2.mob), G)

I NI.expr =And...exprG, Empty-expr(N2.mob)))

D GRF(Nl, N2)

Note that we have had to add some ad hoc extensions to the specification language. 0

denotes a boolean-valued expression, Empty...expr(N.mob) denotes either

queueCeICS pty(N .rob) or crowd$em pty(N.mob), as appropriate, and

And_expr(G1I, G2) denotes the expression that is the conjulnction of the two guiarantees.

P~roof. By definition of GRE-def and the Eva] fuinction. For the first rulle, Suppose that
the gularantee is crowdeipty(C). Theni for any history that contains a join event
for that crowd but does not contain the corresponding leave event the guarantee
will evaluate to trilse, which proves the rule. Similar reasoning holds for the first

rule if the guarantee is qUCUe$empty(Q). A similar proof holds for [he GRE firom
expression rulle.

-113-

5.3.5 Using GX clauses

GX clauses are used to indicate where events are excluded because of

guarantees being false. For example, if a guarantee for a queue is crowd$empty(C),

where C is a crowd, then a dequeue event with that guarantee is prohibited from

occurring between a join and a leave event for any transaction for that crowd. The

following rule is used to infer GX clauses.

GX rronm GRE rule:
(Nl.match = N2 & N2 # N

& (Nl.kind = join I Nl.kind = enqueue)

& N.kind = dequeue
& GRE(N.expr. N2.mob))

SGX(NI, N2, N)

IThe clause GRE(NI, N2) used above is true it the expression NI.expr requires the

queue or crowd N2.mob to be empty for the expression to be true.

Proor: By contradiction. Suppose that GX(NI, N2, N) is not true, yet the

preconditions are met. By the definition of a valid sybtxl map, there must be
three distinct events (el, e2, e) that occur in any complete history I, which implies

that there are three distinct indices (I, J, K) such that:

-114-

------------. '.,---- t.

(el = Nth(h, I) = E({ N I p)

& e2 = Nh(h, J) = E(IN21,p)

& e= Nth(h, K) = E(N}.p)

& el.node.match = e2.node
& (el.kind = join I el.kind = enqueue)
& e.kind = dequeue
& Precedes(el, e, h) & Precedes(e, e2, h))

Further, from the GRE clause we know that the guarantee for event e must be false
for any prefix ofh that contains el but does not contain e2. Since e occurs after el,
we have a contradiction (due to Legal-dequeue), since e is a dequeue event that
occurs when its guarantee is false. Therefore, the GX from GRE rule is true.

GX clauses are a useful intermediate step that can be used to infer event

orderings.

vent before GX Mote:

(GX(N 1, N2, N) & E < E2 & Ei.trans = E2.trans
& Knode = N & H.node = NI & F2.node = N2)

D E < El

Proor: liecause F, Fl, and F2 are nientioned in ordering clauses, Fbr any valid symol
nmap p and complete history h, there must be events (el, e2, e) occurring at distinct

indices (1, J, K) such that:

V r

*1

~-115-

(el = Nth(h, I) = E(I El Ip)
&e2 = Nth(h, J) = E({E21,p)
& e = Nth(h, K) = E({E,p)

& e.node = N({ N ,p)
& el.node = N(NI p)
& e2.node = N({N2},p)
& Precedc-e4, e2, h)

& Same_trans(h, I, J)
& Nodeexcludes node(el.node, e2.node, e.node, h))

By the definition of Node_excludes_node we can infer:

Excludes(el, e2, e) & Precedes(e, e2, h) & e * el

which implies that Preccdes(e, el, h), which implies that the clause E < El, and
therefore the rule, is true.

As with the PX clause, there is a symmetric rule to Event before GX.

Event aifter GX rule:

(GX(N 1, N2, N) & E1 < F & El.trans = E2.trans

& E.node = N & El.node = N I & E2.node = N2)

SFE2 < E

Proof: Similar to proof Ibr Event belbre GX.

-116-J

5.3.6 FIFO queues

Scrializer queues are served strictly first-in-first-out. The following rule is

used to infer event orders from the use of FIFO queues in serializers.

Event from FIFO rule:
(El < E2 & El.kind = enqueue & E2.kind = enqueue

& El.node.mob = E2.node.mob

& E3.trans = El.trans & E4.trans = E2.trans

& E3.node = El.node.next & E4.node z E2.node.next)

S!E3< E4

Proof: By contradiction. First, suppose that E3 occurs (we are not required to do so by

the clause). As in the above proofs, El, F2 and E4 are unmarked events mentioned
in ordering clauses; so they must occur. There must be four events (el, e2, e3, e4)
with distinct indices (I, J, K, L) such that:

(el = Nth(h, 1) = E({EIJ,p)

& e2 = Nth(h, J) = E(E21,p)
& e3 = Nth(h, K) = E(IE3},p)

& e4 = Nth(h, L) = E(f E4},p)
& Precedeel, e2, h)
& el.kind = enqueue & e2.kind = enqueue

& Sametrans(l, K, h) & Same_trans(J, l, h)

& e3.node = el.node.next & e4.node = e2.node.next)

We need to prove that Precedes(03, c4, h), which we do by asmuing
Precedes(e4, e3, h), and finding a contradiction. Ily the definition of

ILegal-transactionstep we know that Precedes(el, e3 h) and Irecedi, 2 e4, h).
Ict ll be the largest prefix of h that docs, not contain L4. We will show the
contradiction b) considering the predicate ILegal steph', 4, S), where S is the set

of node graphs for the serializer.

-117-

~* i

Since e4.kind - dequeue, Legal step(h 1, e4, S) requires that

Legal-dequeue(h , 4) be true, which requires that Eval be true for the guarantee,
and that Head-enqucue(hI, J) be true. Headenqucue(hI, J) is only true if every

other transaction with an eoqueue event for the queue e4.node.mob that occurred
in hl prior to e4 has a corresponding dequeue event that has occurred in hi.

Hlowever, we know that e3 has not occurred in hl by our assumption of
Precedes(e4, e3, h). 'Therefore, either Precedes(e3, 4, h), or e3 does not occur.

The proof that e3 occurs is simple. We know that e4 occurs in h, since it is

denoted by an unmarked event mentioned in an ordering clause. "herefore, when
4 occurs, 3 must have occurred in the history hi by the definition of

Legal-dequeue.

5.4 Evaluation of guarantees

In fIlurher rules we will need to express the evaluation of guarantees. The

clause EVT(G, F) is used to specify that expression G always evaluates to true

immediately before event . The clause EVF(G, E) is used to specify that expression G

always evaluates it) false immediately before event . In translating from specification

language to delinition language we will assume that, if the event denoted by F occurs at

index I in history h. then

C(I FVIT(G, F)},p,h) = Eval(flead(h, I-]), 1-)

C(FVF(G, Fl)},p,h) = -Fval(llead(h, I-I), {G })

When the event denoted by F does not occur, the VI' and FVF clauses are undeined.

We are careful to only use these clauses in contexts where such an event does occur.

-118-

* "Ihe following rule can be used to infer FVF clauses:

EVF rule:
((El.kind = enqueue I El.kind = join)

& El.node.next -z E2.node

& El.trans = E2.trans

&El<E<E2)
D EVF(Emptyexpr(El.mob), E)

Proof: Suppose that M is a queue. By the definition of Legal-transaction step, there
can never be more dequeue events than enqueue events for any transaction.
llerefore, by the definition of Csize, the queue is empty (Csize(M) = 0)only if all
transactions have the same number of enqueue events as dequeue events
immediately preceding E. However, the transaction El.trans has an enqueue event
(El) that has occurred without the matching dequeue event (E2). Iherefore, the

queue must not be empty. A similar proof holds if M is a crowd.

The following rule can be used to infer EVT clauses:

EV'F rule:

(V El,E2:

if (El.trans = E2.trans & Fl.node.mob = M
& El.node.match = E2.node)

then F < El I !E2 < F)
D FVl'(Eiiptyexpr(M), F)

Proof: First, we note that within the quantilication the events F and El are required to
occur, yet the event F2 is not required to occur, since it is marked. Iie condition
that we are expressing with the quantilied clause is that Ibr every pair or events
denoted by El and F2 the event denoted by F either octurs belbre (or is (ih same
as) El, or occurs after -2. Note that il" El < F is true, then !F2 < F is false if F2

-119-

i-7
, I ,a

]does not occur. In order for Empty-expr(M) to be false when evaluated
immediately before E there must be some transaction that is in M immediately
before E, which means that the enquene (or join) event (call it El) occurs before E,
but the dequeue (or leave) event (call it E2) does not occur before E. We can
express this requirement as

E1 < E < !E2

which is prohibited by the precondition

E< El !E2 < E

and therefore the clauses always evaluates to true immediately before E.

The above clause uses internal quantification over all events, which is another

extension to the specification language. It is difficult to use the above rule as it is in a

verification program due to the internal quantification. The set of all events is infinite,

and cannot be enumerated. We can prove that the quantification clause is satisfied by

contradiction: proving that there can not exist a transaction with events El and E2 (as

given above) where the clause within the quantification is not satisfied. This method

will be fiLrther discussed in the next chapter.

The following riles can be used for guarantees that are conjunctions or

disjunctions. "liese rules are suffilciently simple that we will omit the proofs.

EVI froni conjunction nile:

(G = Andexpr(GIG2)
& -V'Ir(G I, F) & FVI(G2, F))

D FV'r(G, F)

- 120-

EVTr rroi dlisjunction rule:
(G = Or-.ex pr(G1, G 2)
& (FVT(GI1, E)jI EVT(G2, E))

D EVT(G. E)

EVF from conjunction rule:
(G = And_expr(GI, 02)
&(EVF(G1, E) I EVF(G2, E)))

D EVF(G. E)

EVF rroni disjunction rule:
(0 = Or..expr(Gl 0. 2)
& EVF(GI1, E) & FVF(02, F))

D EVF(G. E)

We have used 0, Gl, and 02 to denote gu~aranitees, and And-expr and Or expr to

denote con1jUnctions and disjUnctions of guarantees.

5.5 Priority or dequeue over enter and leave

If there are clucicUs with true guarantees wheni possession is released, a

dequeue event for one of those queuies will xCCUr before an enter or leave event.

Suppose we know that an enqueue event E-l occurs berore .an external gaining

event F. To show thai F must occiiiafter the dequeue event F2 corresponding to FL. we

must know that the guarantee for Fl is truei immediately prior to F, and that there can

he no transaction with a lIlISe guarantee that is in the quiete ahead or the transaction for

El when F occurs.

-121 -

-A-A 4-r*

Event from ready queue rule:

(E.kind = enter I E.kind leave)

& El.node.next = E2 & El.trans = E2.trans

& El.kind = enqueue

& EVTI (El.expr, E) & El < E

& v E3,E4:
if(E3.kind = enqueue & E3.mob = El.mob

& E3.trans = E4.trans

& E3.node.next = E4.node

&E3< El)

then EVT(E3.expr, E) !E4 < E)

D!E2< E

Proor: We will outline a proof by contradiction. Assume that the gaining event F
precedes the dequeue event E2, such that El < F < E2. The quantification over E3
and F4 is a precondition that requires every transaction that has entered the queue
before El.trans to either have a true guarantee (immediately before E) or to have

left the queue before the gaining event E. 'herefore, there can be no transaction
with a fIalse guarantee in the qtete ahead of Fl.trans. However, the gaining event
E cannot occur while there is a queue with a true guarantee, which is true for
El.mob. This is a contradiction, so we can infer that if E2 occurs, it must occur
before F. By similar reasoning, E2 must occur, since if it does not occLr there will

be a ready queue when E occurs (P mnust occur, since it is an unmarked event).

Note that the above rule was expressed as implying !E2 (F, which not only

implies an ordering between events, but also implies that the event denoted by F2

occurs, since any event the precedes an event that occurs must also occur.

122 -

1W

The above rule is admittedly long and complex. We can shed Some more light

on the reasoning behind its form by considering some examples.

* Suppose that there are events E3 and E4 such that E3 (El, and [4 does

not occur (using E, El, E2, E3, and E4 as in the above rule). Then the
precondition expressed by the quantification must be false, which means
that we cannot infer [2 < E. This should seem reasonable, since by the
FIFO queue rule we know that E4 must precede E2 if E2 occurs, which
implies that E2 does not occur.

* Suppose that there are events [3 and E4 such that EVF(E3.expr, F) and

E3 < El. Then it is possible for E3.trans to be at the head of the queue
when E is ready to occur, which would imply that E < E4, or that E4 did
not occur at all.

The reader may note that we have only considered a single queue in the above

rule. It may be imagined that all of the preconditions were met for two queues, yet one

queue was arbitrarily chosen to proceed, which then made the head guarantee of the

other queue false, which then allowed the gaining event E to occur. Such a situation is

covered by our rule, since we do not specify evaluation of the guarantee at any

particular time, but rather imein, iaiely bef)re 1he event F in any conlexl. Intervening

- dequeue events fronm other queues are unilportant, since they will only postpone the

occurrence of F, not change the prccondition EVT(Fl.expr, E).

" 123-

! Ai

5.6 A method for proving service

A service specification typically states that for every complete history and

valid symbol map, the occurrence of an enter event for some transaction implies the

occurrence of the exit event for that transaction. In proving this, we typically need to

prove that the occurrence of any event (exit events excluded) in a transaction implies

the occurrence of the next event in the transaction. Another way to state that the

occurrence of one event implies the occurrence of another is to say that every complete

history that contains tile first event contains the second.

For most events in a transaction, if an event occurs, the successor event in that

transaction must occur. For simple serializers, the occurrence of an event that gains

possession implies the occurrence of a corresponding event that releases possession.

Further, we have assumed that accesses to the resource terminate, so the occurrence of a

join event implies the occurrence of the corresponding leave event. There are only two

kinds of events where the occurrence of an event does not imply tile occurrence of tile

successor: exit events, because they have no successors, and enqueue events, because

they might never have true gtarantees whenever possession is released, or because there

might always be another queue readdy whenever possession is released.

'lle method we propose fbr proving that an enquette event requlires a dequeue

event is to first suppose that the dequeue event does not occur, then prove a

contradiction: that a complete finite history exists where there is a ready queue at. the

end of tie history.

-124-

Xi. , -

Suppose that we want to prove @)EI D @)E2, where El and E2 belong to the

same transaction, and El precedes E2 if both events occur (which can be written as

OPEI & @E2 D !E1 < !E2). We need to show for every enlueue event E3 with

corresponding dequeue event E4 that if E3.trans = EL.trans then the occurrence of E3

implies the occurrence of E4 (@E3 D @E4).

If an enqueue event occurs for some queue and the dequeue event does not

occur, then we say that its queue is blocked. If a queue is blocked, then we can infer the

following:

* If every join event for some crowd requires a preceding dequeue event
from a blocked queue, then the crowd will eventually become empty.
'This is true because when the queue is blocked, there can be no further
join events, and every join event requires that a leave event occur.

If every enqueue event for some queue Q requires that a dequeue event
for a blocked queue B must occur (because the enqueue event must
follow some other dequeue event that is waiting for B to empty), then Q
will eventually become either blocked or empty. Since the enqueue event
for Q will not occur, then no new transactions will be added to Q, which
implies that only dequeue events for Q can possibly occur. Eventually
either Q is empty or a transaction with a IFasc guarantee is at the head of
Q.

If every occurrence of an enqueue event for some queue implies the

occurrence of a corresponding dequeue event, and the queue will
eventually become either blocked or empty, then the queue will
eventually become empty.

By saying that a condition "eventually becomes" true, we mean that for every complete

history there is a event where the condition is truc at every event after that event.

-125-

f * ' 4

The method is now clear: to prove the contradiction, we assume that the

dequeue event (E) does not occur, that certain queues and crowds will become empty,

and that certain queues will become either empty or blocked. If these additional

assertions are sufficient to prove that the guarantee for E is true, and that there is no

other dequeue event with a false guarantee that is blocking E, then we have found a

contradiction, and actually proved that E must occur.

We will not present rules for proving service. The number of supporting rules

is relatively high, and the additional material would not introduce any new concepts.

The method of proving service will be further explained in the next chapter.

5.7 Rule-based proving of FIFO priority specification

In this section we present a proof based on successive applications of the rules

we have presented in this chapter. As presented in the previous chapter, the FIFO

readers-writers problem has the following (partial) priority specification:

R I-enter < WI-enter D RI-exit < Wi-exit

A rule-based proof of tile above clause takes two stages: derivation of intermediate

clauses (such as PX, GRE, and GX clauses), and use of tihe rules that imply event

orders. Note that the first stage need only be performed once lbr any particular

scrializer, while the second stage is usually dilffrent for every specification clause.

-126-

, *1

*6

In the flrst stage, we examine thle node graphs and use the PX from gain rule

to derive the following PX clauses, which indicate possession exclusion:

PX(R*-enter, R*-enqueue(x.xq))

PX(R*-dequeue(x.xq), R*-join(x.rc))
2 PX(R*-leave(x.rc), R*-exit)

PX(W*-enter, W*-cnqueue(x.xql))

PX(W*-dequeine(x.xq). W*-join(x.wc))
PX(W*-leave(x.wc), W*-exit)

We then examine the node graphs and LIse the GRE from empty rule and the GRE

from expression rule to derive the following G RE clauses:

GRE(R*-dequ1ee W*-join)

GRE(W*-dequeuie, R*-join)
GRE(W*-dequleLI, W*-jOin)

Using the GRE clauses and the GX from GRE rule, we derive the following OX

clauses:

GX(W*-join, W*-leave, R*-dequeue)
GX(R*-join, R*-leave, W*-dequeue)

GX(W*-join, W*-Icave, W*-dequeue)

In the second stage of'the proof, we prove tile irnplication by issuming the

precondition, and deriving the consequence. we use tile Tiransaction order rule to

derive:

-127-

(RI-enter < RI-enqueue (R1-dequeue

< Ri-join < Ri-leave < Ri-exit)

&

(Wi-enter < WI-enquCue (Wl-dequeue

< Wi-join < WI-leave < Wi-exit)

Then we perform the following inferences, using the indicated rules:

Event order Rule applied

RI-enter < WI-enter Assumed

RI-enqueue < WI-enter Event after PX

R 1-enquCue (WI-enqueue Transitivity

Rl-dequeue < Wl-dequeue Event from FIFO

Ri-join < Wl-dequeue Event after PX

RI-leave < WI-dequeue Event after GX

R I-exit < Wl-dequeue Event after PX

R l-exit < W I-exit Transitivity

5.8 Coninients on the veriication rules

While the intent of defining inference rules in the specification language is to

simplify verification, one unfortunate side-effect has been to add numerous clauses to

the specification language. These additions have made the specification language far

closer to our definition language than we would like. As we add more extensions we

begin to lose the simplicity that proofs in the specification language have over proolfs in

the delinition language.)espite these misgivings, the rules do appear to work at a

higher level than could be obtained from the definition language.

-128-

We have added a means for avoiding the requirement that every event

mentioned in the ordering clauses must map (via the symbol map) to an event that

occurs in the complete history on which the map is based. There is no inherent reason

why this ability should not be extended to the user, although we have chosen not to do

SO. Th~is feature is only rarely used, and continues to have potentially surprising

interpretationls, as evidenced by the Event from ready queue rule, where the occurrence

of an event was proved without resorting to the @E notation.

-129-

6. NuutNatic SeArializer Prover

The previouIs Chapter presented verification rules that were defined in an

cdetnded specification language. This chapter describes a program that makes Use Of

those rules. While limited to dealing with sinmple serializers and specification clauses

that do not mention the rank of an event, many of the principles Used are applicable to

more general serializers. T'he program, called ASP (Automatic Serializer Prover), has

been tested on a number of versions of the readers-writers problem.

In this chapter, we discuss the structulre of ASP, First by giving an overview,

then by detailing some of the algoithms Used. The results for the readers-writers

examples are given, and we discuss how ASP could be extended to accommodate

variouIs extensions to simple serializers.

6.1 Overview of ASP

The inpuit to AS13 is a description of each operation of a serializer and the

specification clauses for the serializer. We use ASP interactively to prove that the

Specificationi clauses are satisfied, or- to examine why they are not. The execuition of

ASP~ has tile following phases:

*Initialization: Ibis phase builds rep resentat ions of thle node graphs for

the serializer operations given the text for tile operations.16 In thle

16.In Il' at lii rai ll. tile text unuist uindergttan in itial translatiton by hand ini orde to lie pi-mewsd

I hiis allo wed tis It) cticntrate o XItur eliis (il we hrit iin rather t han parsing.

-130-

remainder of this chapter, we will make no distinction between the node
graph representations used by the prograin and the node graphs used in
the semantic model.

* Static analysis: This phase examines the node graphs to determine

possession exclusion, represented by the PX clauses mentioned in the
previous chapter, and guarantee exclusion, represented by GX clauses.
Note that we also make no distinction between the specification clause
representations used by the program and the actual clauses.

* Verification: In this phase we attempt to prove each specification clause

given. Typically, a specification clause is given as an implication
consisting of a precondition clause and a consequent clause. Proving such
a clause involves assuming the precondition and using the inference rules
described in the previous chapter to derive the consequent clause. When
a consequent clause is derived, further rules may be applied to derive new
clauses.

"'lle iiode graphs, specification clauses, and other data are kept in a structure

called the data base, which is composed of the following parts:

Node graphs: 'llere is a node graph for each operation of the serializer.

Each node has a structure as described in Chapter 3. Data structutres
representing expressions (as in N.expr), queues and crowds (as in
N.mob), and kinds (as in N.kind) are relirred to by the node graphs.

'ransaction slack: 'lliere is a stack ol" transactions that represent the

transactions ntllioned in the specification clauses. Each transaction
symbol ill a specilication clatsc has a corresponding transaction in this
stack. Further transactions may be added to this stack due to attempted
proof by contradiction, as mentioned in the previous chapter. When sLtch
iin attenmpt succeeds or fails, such a transaction is removed from the stack.

-4131-

- ' ' ~ ' '

Assertion stack: There is a stack of specification clauses that have been

asserted and the rules used to assert the clauses. The asserted clauses are
those that have been assumed to be true or have been added by
application of the inference rules to the clauses in the assertion stack.
This stack provides a record of which rules led to particular event
orderings, as well as an efficient mechanism lbr removing assertions.

Event stack: There is a stack of the events that exist (although do not

necessarily occur) for the transactions in the transaction stack. This stack
is closely coupled to the stack of known transactions, since each event in
this stack must have a known transaction. Whenever a transaction is
added to the transaction stack, an event for every node that the
transaction may execute is added to the event stack. When a transaction
is removed from the transaction stack, all events for that transaction are
removed from the event stack.

Event order matrix: There is an extensible square matrix used to
represent event orders. 'here is a row and a column for each event, with
the entries indicating the ordering between the events. The row and
column index for a particular event are identical, and the index for an
event in this matrix corresponds to the index in the event slack for the
event. The matrix is extended or retracted (in both dimensions) as the
event stack is extended or retracted.

6.2 Static analysis phase

'Ilhe static analysis phase inserts PX and GX clauses into the data base

according to tile node structure of tile operations. It is performed in advance of

examining tile specification clauses. The purlse ol1 the static anal)sis phase is to

perform steps that can be done once for a given serialier, and avoid performing these

steps f16r every clatuse we wish to prove.

- 132 -

. . ,,'. .-

The PX (Possession ExcIluSiOn) clauses are generatedbyeaingteod

graph to determine when it transaction is in possession of tile serializer. For simple

serializers only the PX from gain rule is needed.

The GX (Guarantee Exclusion) clauses are generated by examining the

guarantees on enqucue statements during the initial pass over the serializer. They are

generated according to the O-'X from GRE rule, which depends on the GRE from

empty rule and the GRE from expression rule. As long as the guarantees only involves

testing the emptiness of crowds or queues, or conjunctions (G I & G2) of tests for

emptiness, GX clauses can be generated for the guarantees during static analysis.

Guarantees that arc disjunctions (Gi 0 2) or negations (-0) do not generate OX

clause during static analysis.

6.3 Verilleution phase

A specification clause is usually written as P i Q, where 1) and Q are

SPeCi lICatiol chlauses that do not use implication clauses. Verifying that P i Q Is

siid in~olvcs assuiming that thle precondition clause P is true, and showing that thle

consequent clause Q Is thereliwre true. Note that the clause 1P is assumied to he (rue For a

pairlicular choice of complete history and vald symbol map. '111C Verification

methodology allows uts to prove:

V p.11: (P Q)

flic assumptuion and primd'should nol he viewed as:

-133-

(V p,h: P) :) (V p,h: Q)

When a clause not previously in the assertion slack is asserted, we say that it is

inserted into the data base. When a clause is inserted, ASP checks certain rules to

determine whether they are immediately applicable. These rules are called inserlion

ri/es, and are: Transitivity, Event before PX, Event after PX, Event before GX, Event

after GX, and Event from FIFO. If any are applicable, we assert the event order clauses

they imply. This, in turn, may lead to the assertion of further clauses, and so on. This

process is complete when no firther insertion rules are applicable.

In asserting an e cnt ordering, we need to have computer representations of

events. In order to have event representations, we need transaction and node

representations. T[he initialization phase built the nodes. The transactions and events

are built by examining the specification clause to determine which transactions are

mentioned in the clause. Iliese transactions, and their associated events, are added to

the data base.

For each transaction llat is added due to being explicilly named in fhe

specification clause, the Transaction order rule is Lsed to determine the order of the

events that belong to the transaction. This leads to the insertion of event order clauses,

but does n1ot immediately lead to the application of any rules other than the transaction

order rule and the transitivity rule, since there is no known initial ordering between

events from dilitrent transactions.

- 134-

Ln!

H To prove an implication, we assert tile precondition and attempt to derive the

result. lhe precondition for a specification clause is asserted by performing operations

on the data base to assume the Various parts f the clause. For example, one

component of the specification clause may be an event ordering, El < E2. This clause is

asserted by calling the adtorder operation of the data base. If this clause was not

previously asserted, the insertion rules are applied by this operation.

6.4 Evaluation of guarantees and anonymous transactions

In several piaces in ASP it is necessary to evaluate a guarantee to determine if

a queue is ready. The FVT and EVF clauses mentioned in the previous chapter are

used to indicate tile evaluation of guarantees. EV'I(G, F) is true for some history that

contains F if tile guarantee G evaluates to true ,a the largest prefix of the history not

containing E. FVF(G, F) is true if G evaluates to Ihlse in that prefix. For example, if

the event F occurs between corresponding enqueue and dequeue events for some

transaction, as in:

X-enqueue(Q) < E < X-dequeue(Q)

then we can assert (he clause

FVT'(queime$empty(Q), F)

In some cases, it is not suflicient io simply use tile V'T and EVF rules

presented in tile previous chapler. Consider tile Illowing concurrency specilication for

(ihe FIFOi- readers-writers scriali,'er:

- 135 -

Rl-enter(R2-enter(RI-leave&GX(RI-enter, R2-enter, W*-enter)

R2-join (Ri-leave

In proving this specification, we need to prove

EVT({ crowd$empty(x.wc) }, RI-leave)

The insertion rules are sufficient to prove that the writers crowd (x.wc) is empty when

the readers crowd (x.rc) is not empty. However, the rules we have presented do not

immediately allow LIs to conclude that the EVT clause above is true, since we must

prove the clause for all writers.

A more general method of proof is available to us, based on proof by

contradiction. If we assume that a writer is in the writers crowd, and that leads to a

contradiction, then the writers crowd must be empty. To be exhaustive in choosing the

writer, we have two cases:

1: The writer can be a writer that already exists in the transaction stack. To
assume that some writer W is in the writers crowd when R 1-leave occurs,
we assert:

W-join (R I-leave < W-leave

and apply the insertion rules as necessary. A contradiction occurs if this
leads to F (F being asserted for any event F (cyclic event orders are

-, I'prohibited by I cgaltransaction_step). II" no contradiction occurs, then
*" we cannot prove the FVI" clause. If' all writer transactions in the

transaction stack cannot be in the writers crowd, it is necessary to apply
the second case.

2: If no writer in the transaction stack can he assumed to be in the writers
crowd, it is still possible that there is some other writer that can be in tihe
crowd. lherelore, we invcnt an anon vinous IiransacIion and place it in the
transaction stack, and assume that the new writer is in the crowd, as in the
Ii rst case. I 1 assuming that (he anonynotus transact ion in in the crowd

- 136-

.. .*~ .- A

leads to a contraidiction, then we can assume that the writers crowd is
emnpty at RI-leave, and thereflore the EVTclau1se is trueI.

The above method is easily generalized to proving any queule or crowd empty.

6.5 Checking for ready queues

Thle Event from ready qulcue rule is difficult to apply, since there is nested

quanti ication. We start by examining the data base for dequcuc events where the

guarantees are true immediately preceding enter or- leave events. Consider somne

transaction X, where X-dequeue has a true guarantee immediately before some enter or

leave event, which we will call E. If F is known to occur after X-enquieue, then the only

way that F can occur before X-dequeuel is li~r there to be a transaction in the same

queue, ahead of X, with a f'alse guarantee. If such a transaction exists, we say that it

blocks X-dequeueC.

If 11o known transaction can block X-dequeue.C it may still be possible that

some other transaction not mentioned in the specilicatioii clause can hlock X-dequeuie.

I hcrefibre, we create anl anoninotis transaction Z for an operation (pro~ ided that that

Iransaction canl have an eliqueue event kr the same queue as \-dquleu), and assert

that

/-enquetie < X-enqueuie < -dequeue

where X-enqueuie and Z-criquete occur for the same queuec. If the gumarantee for

/-dequieue is trume inmmlediately before F, then Z cannot block \. IFurthler, if asserfing

-137 -

A1

that Z-dequeue occurs after E causes a conflict, then there can be no such transaction Z.

If there is no Z, for any operation of the serializer, that can block X, then X-dequeue

must occur before E.

6.6 Proving by cases

One potential drawback of using the insertion rules is that some relatively

simple proofs will be trnachievable because there are not enough assertions. In

particular, if enter events El and E2 are known to occur, yet the order of El and E2 is

unknown, we may be able to prove a clause if we assume either El (E2 or E2 (El, yet

be unable to prove the clause if no order is assumed. ASP can perform some of these

proofs by cases: where the order of El and E2 is unknown, first assume El (E2 and

perform the proof, then retract the assumptiun of El (E2, assume E2 (El, and

perform the proof. If" the desired result is obtained in both cases, the proof is valid,

providled that El and F2 tire known to occur.

The concurrency specification clause given For the FIFO serializer was overly

*' restrictive, since it specified that

R l-enter < R2-cnter (R -leave

ind the result (R2-join < R -leave) can be shown to be true even i' R2-enter < R I-enter.

Tlhc Illowing clause is a stronger version ol the concurrency specification that requires

prool by cases:

- 138-

* 7 -- 7

GX(RI-enter, R2-enter, W*-enter)& R2-enter < Ri-leave
D R2-join < Ri-leave

Note that the GX clause does not specify that Ri-enter< R2-enter, although the GX

chaise is trivially satisfied if R2-enter < Ri-enter. Initially the precondition is asserted.

Then ASP first assumes RI-enter < R2-enter, proves the consequent clause, retracts the

assumption, then assumes R2-enter < RI-enter, and proves the consequent clause. That

Ri-enter and R2-enter occur can be shown in two ways: they are mentioned in a GX

clause, and events subsequent to them (by Legal transactionistep) are mentioned in an

ordering clause.

6.7 Proving guaranteed service

In many serializers we would like to prove that every transaction rece yes

service, i.e., for every enter event there is an exit event. The following is a typical

service specification clause:

0@'-enter D @T-exit

Proving guaranteed service for a transaction is performed by proving that each dequeue

event that the transaction can eXecute is guaranteed to occur, since we have assumed for

simple serializers that all other kinds o1" events will occur in complete histories given

their predecessors.

Proving that a dequeue event occurs is largely done by contradicion: We

assume that the dequeue event does not OCcuIr, which implies that its queue is not

cnlply, and that any crowds that require dequeue events from that queue will empty.

- 139-

Ps * X. ,*.

..... V

'Ibis is generally enough to show that the guarantee for the dequeue event is true. t11he

dequeue event must OCcur if no other queue is ready.

In this method, evaluating the guarantees must take place immediately prior

to sonic event, since that is the basis of our evaluation mechanism. But there may be no

actual event occurring, especially if no further enter events occur. Therefore, we invent

a ictitious event with certain properties. We assume that some "quiet point" event QP

occurs, such that the event QP gains possession of the serializer only when no queues

are ready, and QP occurs late enough such that every crowd or queue that must empty

has emptied. If the guarantee For tie dequeue event in question is true at QP, and there

can be no blocking of the dequeue event, then the dequeue event must precede QP,

provided that QP does occur. We can guarantee that QP does occur if every other

queue is not r.,ady at QP. At this point we have proved that QP does occur, and the

dequeue event precedes QP, but we assumed that the dequeue event does not occur.

'Ibis is the contradiction that proves that the dequeue event does occur.

- 140-

V J 7

For extended serializers, it is possible for a request kind to have guaranteed

service, yet the quiet-point method is too weak. To illustrate, suppose a scrializer has

the following operation:

op proc (x: cvt)
if queue$empty(x.q)

then % O-enqt
enqueue x.q until crowd$empty(x.c)

else % O-enq2
enqueue x.q until crowd$empty(x.c)-& -crowd$empty(x.cc)

end
join x.c % 0-joini

end
join x.cc % O-join2

end
end op

For simplicity, we will suppose that op is tile only operation of the scrializer that can get

sole possession (uses cvt). The QP event will not occur until x.c is empty and x.cc is

empty. However, at QP the guarantee for O-enq2 is false. Therefore, it seems possible

for QP to occur before O-enq2, so guaranteed service cannot be proven.

One way to prove guaranteed service for the above serializer is to split the

proof into two cases dependent on the test queue$empty(x.q) in the if statement. If the

test was true, tile QP method will work. If the test is false just before O-enq2 occurs,

then there must be at least one other transaction, call it 01, that is in x.q when the

O-enq2 occurs. tu then there are two more cases, based on whether or not

crowd$emP/t. (x.c). If .x.c is empty, then (he guarantces for x.q must be true, and 0-dcq2

must occur before 01-lcave, which must occur belore QP, which guarantees service. If

x.cc is not empty, then there is yet another transaction, call it 02, such that .%.c will be

empty at 02-join2, which implies that the guarantees for x.q will he true belore

02-lcave2, which nmst precede QP. AlIhough this analysis by case would be expensive,

-141 -

* ~*'*7
'V -''A~

it would be possible to add to ASP.

The reader might object that the above example is quite contrived, and we

would agree. We have discovered no convincing realistic examples that require more

than the simple QP method, even when extensions to serializers are considered. For

this reason, ASP supports only the simple QP method.

6.8 A sample verification

This section presents a sample verification performed by ASP. Figure 4 figure

shows the results produced by using ASP to verify a priority clause for the FIFO

readers-writers serializer presented in Chapter 2. Input from the user is indicated by

underlining. The user starts the session by typing in the name of the serializer that

should be used. That name is interpreted as a file name, where the File should contain a

description of the serializer in the format required by ASP. Then the user types the

clause to be verified.

Ihe response from ASP indicates whether the clauLsc could be proved, and

shows the assertion stack after the insertion riles have been applied (the first clause

printed is the most recently asserted clause). This information is usually sllicient to

Cntlnlerate the steps of the proof, or to demonstrate why tile clause could not be proved.

While we will not describe them in this thesis, additional aids are present for more

detailed inspection of the steps that ASP uses to prove clauses.

-142-

. i T . .

Figure 4. A saniple vefrickatio by ASP

Name of serializer: FIFO
1.012 seconds to setup.

Specification clause: Ri-enter < Wi-enter => Ri-exit ., WI-exit
Proved Implies(RI-enter < Wi-enter,

Ri-exit < Wi-exit)

base[39:
Ri-exit < WI-dequeue-xq: Possession exclusion,
Ri-leave-rc < WI-dequeue-xq: Guarantee exclusion.
RI-join-rc < Wi-dequeue-xq: Possession exclusion.
Ri-dequeue-xq < Wi-dequeue-xq: FIFO queues,
Ri-enqueue-xq < Wi-enter: Possession exclusion.
Ri-enter < WI-enter: Assumed.
TR: Wi-enter: From clause,
TR: Ri-enter: From clause]

1.376 seconds.

Note in Figure 4 that not all of thle rules are shown. 'lle default used is to

omnit showing the clauses asserted in the static analysis phase, and use of the Transaction

order and Trransitivity rules. '[he notation "base[39 :H appearing in the middle of the

figure indicates that the assertion stack has 39 members. At the end of the figure the

amouint of processor time needed for the proof is given. [hlis figure incIludes tile

processor time necessary to par-se the expression, apply the verificationl rules, and to

ip -int tile results. T[le notation "TR : W-enter: F rom clause" is used to indicate that

the transaction W1 was added to the transaction stack since [lhe Iransactiol) was

4 mentioned in tile specification clause (flbr unif'ormity in tile program this is treated as an

assertion).

-'43-

blw

' 1 1- P

6.9 Perfornice results

In this section we present a number of verifications performed by ASP on

variation of the readers-writers problem. Each test is given as a specification clause to

be verified (or not verified) for different readers-writers serializers. FigUre 5 presents

these specifications, most of which have been mentioned in previoLus chapters as

specifications of different properties for the readers-writers problem.

Figure 5. Readers-writers tests ror ASP

Wpri: Writer's priority
Ri-join < Wi-enter < R2-enter < W2-enter < RI-leave
D W2-join < R42-join

(NWPRI): Modified Writer's priority
Wi-enter < Ri-enter < W2-enter < WI-leave
D w2join < rijoin

Rpri: Reader's priority
Wi-enter < W2-enter < Ri1-enter < Wi-join
D Ri-join < W2-join

(NRPRI): Modified Reader's priority
Ri-enter < WI-enter < R12-enter < Ri-leave
D r2join < wijoin

SR: Concurrency for Readers
GX(Rl-enter. R2-enter, W-enter) & R2-enter < Ri-leave
D R12-join < Ri-leave

XexY: X busy excludes Y busy

X-join < Y-join D X-leave < Y-leave

XpoY: X not by-passed by Y
X-enter < Y-enter D Xexit < Yexit

GS(X): Guaranteed service for X
@X-enter D @Xexit

-144-

.1g

An abbreviation for each specification is given prior to each clause. The Wpri

and Rpri clauses specify writer's and reader's priority properties. The (NWPRI) and

(NRPRI) clauses specify alternate versions of these properties to be proved for the

NWPRI and NRPRI serializers (to be shown below). The XexY clause actually denotes

three clauses: RexW, WexR, and WlexW2, where appropriate substitutions apply. The

XpoY clause also denotes three clauses, with the same substitutions.

-145-

Figure 6 presents the code, in abbreviated form, for each of the seven
readers-writers serializers tested. The create operations and headers have been omitted,

as is the trailing code after any join. The use of crowdSempty and queuieSempty is

implicit where empty is used. There is one FIFO serializer, two readers priority

serializers (RPRI & NRPRI), three writers priority serializers (WPRI1,

WPRI2 & NWPRI), and one serializer that allows starvation (STARVE). Note that the

priority specifications for RPRI and NRPRI differ, and that there are also two distinct

writers priority specifications.

The various serializers above were developed at different times. In particular,

NRPRI and NWPRI were written after ASP had become relatively reliable. We

originally attempted to prove the Rpri specification clause for the NRPRI serializer.

The attempt was made much more difficult by a preconception (due to a faulty

informl proof) that the clause could be proved. After much effort to determine the

cause of the fault in the program, we finally noticed that the program was correct: not

only was the clause not satisfied, but the intermediate steps 5ollowed by ASP provided a

counterexaniple. It was his example more than any other that convinced Lis of tihe

worth ofautomatic verification aids.

Tlie modified writers priority specification came about as a test o1" the

speculation that NWIPRI satisfied a priority clause that was synmetric to NWPRI, since

the serializers were (roughly) symmetric. '1lie unniodilied writers priority clause is also

satisfied by the NWPRI serializer.

-146-

~1~~.

-- ,-- "~~~~~~~~~~~~4 . , 4 ', : , , $;J ,..; .; 0, i:-
j ~ -'

Figure 6. ('ode for test serializers

Name Opel' Code

FIFO R enqueue xq until empty(wc); join rc

W enqueue xq until empty(wc)&empty(rc); join wc

RPRI R enqueue rq until empty(wc); join rc

w enqueue wq until empty(rq)

enqueue i'q until empty(wc)&empty(rc); join wc

WPRI1 R enqueue rq until empty(wq)lempty(rc)

enqueue wq until empty(wc); join rc

w enqueue wq until empty(rc)&empty(wc): join wc

WPR12 R enqueue rq until empty(rc)

enqueue wq until empty(wc)&empty(rq); join rc

w enqueue wq until empty(rc)&empty(wc): join wc

STARVE R enqueue rq until empty(wc): join rc
w enqueue wq until empty(wc)&empty(rc); join wc

NRPRI R enqueue xq until empty(wc); join rc

U enqueue xq until empty(wc)&empty(.'c)

enqueue xq until empty(wc)&empty(rc); join wc

NUPRI R enqueue xq until einpty(wc);

enqueue xq until empty(wc); join rc

w enqueue xq until empty(wc)&empty(rc): join wc

I11w results ill Figure 7 were obtained on 23 Au~gust 1979. The times given are

-147 -

Figure 7. ('PU times for ASP tests

Name rime WexR WexW RexW RpoW WpoR WpoW Wpri Rpri R GS(R) GS(W)

FIFO 21 T T T T T T F F T T T

RPRI 35 T T T T ? T F T T T T

UPRII 47 T T T ? T T T F ? T T

WPR12 67 T T T ? T T T F ? T T

STARVE 24 T T T ? ? T F ? T ? ?
NRPRI 36 1 T T T ? T F T T T T

NWPRI 30 T T T ? T T 1 F T T T

Time is given in CPU seconds.

T indicates a proved clause, F indicates a disproved clause.

? indicates a clause not proved or disproved.

CPU seconds fo~r runn11ing all of the tests shown. 7 'The test cases are explained In detail

at the bottom of tile figure. Fach columin after the I ine coluimn repr'esents a difil'eient

test, given by a specification clause. A 1' represents at proven specification claulse. An 1:

represents at specification clause proven to be always False. A ? represents it specification

that could not proven true or fallse. in thle serializei's represented in tile table b~elow

there were no cases where thle pi'ograin was not capable enouigh to pro~re or disprove it

clause that was always true or false. Inl generail, if thle progam can not prove or

t disprove at result, it is cuther duie ito a clause that is Inie lii' somle histories and false for

otheris, or it is dule to at weakness in the verification imethodology, and ASP will be

17. '1hesc tests were pcrtimuced on 23 Ati-ist 1979. tisin a I)cyet-Ib ASP (wctllpies aihout (MK
36htwords d mii i y. o'iw Iiicli abc nit 60i)K wc cds arei due Io 'the ('IIU suppor '0 ysten No appriab ,cle

;pcging activ~it) l4ook placc.

-148-

rzi

unable to distinguish the two.

6.10 Summiary of methods used

'This section provides a concise summary of the methods we have used in ASP.

In this summary we follow the order of steps used in ASP, rather than precisely

following tile order of presentation for this chapter.

* Static analysis is performed once for any given serializer code to

determine initial clauses that are derivable solely from the node graphs
for the serializer operations. The remainder of the steps are performed
for any given specification clause.

* Representations are introduced for the transactions mentioned in the

specification clause.

* For any specification clause of the form P D Q, the clause P is asserted,

and we attempt to derive Q through use of tile insertion rules, which are
tile rules Transitivity, Event before PX, Event after PX, Event before GX,
Fcnt afler GX, and [vent from FIFO. If these rules are not sufficient to
prove Q, further methods must be used.

*The Eventl from reads queue rule, which rellects tie priority of service

given to intcrnal qietcs over the external quecue, is applied where
Ixasible. 'his is known as "checking Iir r ads quccs." h'Iis rule may
resuilt in (lie in vel(t n of afl()lll)otls transact loIIs. A hich lrc essential to
the proof b contradiction that the precondilions for the Itile are met.
AnoynIous transactions .im lt) be Liscd in tih EV'" rule, %,hich is

subsidiary to tie checking ilr ready qcelcues.

When the cla Ise Q is still not proved, and the order of certain enler

events is not knom it, :alhough the cvents are known to occuIr, ASP tries all
pernutations ol stch events. If Q can be proven for evern such
pernmtation, then I D Q has been proved.

- 149-

7v 5
,

* Froof of guaranteed service is perflormed by aIssum[inlg that a transaction is
blocked in a queuie. theni proving that a ready quieue muIst result at Some
Iquiet point." Although this method is limited, it can be proven to be

correct, and works for a variety of cases.

-15(0-

7. Interaction of Serializers

In previous chapters, we introduced the seriali/er construct, presented a

specification language for serializers, and demonstrated some verification techniques.

Our discussion has been limited to single instances of simple serializers. Yet if we are to

reach our objective of modularity, we must examine how serializers interact.

In this chapter we present an application of serializers that incorporates the

use of multiple serializers. We are especially concerned that serializer use can be

nested, so that the techniques for modular decomposition of programs in a single

process domain can be applied to a multiple process domain.

The example we have chosen is the use of serializers to control concurrent

access to a simple ile system. For this example we will assume that objects in primary

memory can be shared by several processes running on a single processor. This choice

is made to keep the example simple enough to be tractable, since presenting a

distributed version of a filing system involves issues well beyond the scope of this thesis.

,, We start this chapter with a presentation of the simple ile system, including a

discussion of the abstractions involved. We then show two of the serialiiers used to

control concurrent access to the file system, and show how the specifications ale similar

to the readers priorilt variant of the readers-writers problem. Firther sections concern

methods Ibr introducing serialiicrs for abstractions that were written for single process

cnvironmlelts, and a discussion of higher-level transactions.

- 151 -

t------

*1.

7.1 The tile system

The structure of the file system is based on directories and files. A directory is

a map trom nanes (expressed by strings) to entries, which are either files or directories.

If directory Y is named in directory X, then Y is a cild directory of X, and X is the

parent directory of Y. There is a single directory, called the rool direcory, that has no

parent directory. Files and child directories may be added to or deleted from

directories. A simple provision is made for iterating over the names of a directory. It is

possible to get the number of entries in a directory, and to determine which directory (if

any) is the parent of a given directory. For most operations, a directory must be open

for the user to perform those operations. Opening a directory is accomplished by the

directory$openjir operation. 'Fhe directory structure is acyclic.

A ile is an array of pages, where a page is some fixed length unit of data.

Pages on primary rnmory may be read from or written to any existing page in a file.

Pages may be added to or removed from the end of a file. A tile may be named by only

one directory. It is possible to get the ntiniber of pages in a tile, and to determine which

directory names the file. As with directories, a file niust le open for the user to perform

most operations. A tile opened by dirctory$olinlrivat can only he accessed by a

siigle process, while a file opened by dirccio'$open~lth/ic can be accessed by any

number of processes (although a practical system might impiose some rcasonable limit).

A tile is closed by the file$closc opcration.

- 152 -

.14

At this point, some additional explanation of the open and close operations is

in order. First, we have made the open operations work on directories, since directories

are the logical means for initially accessing files and child directories. We have made

the close operation work only on the object that the open provides, which prevents

users from closing a file (or directory) except when they have acquired that file or

directory object through an open operation. Second, we have two different kinds of

open operation on files: openpublic, for simultaneous access among several processes

(or users), and openprivate, for sole access. We can associate an open count with each

file or directory object. This count is increased for every open operation, and decreased

by every close operation. The directory$open-private operation will only succeed when

the count is zero, and upon successful completion, prevents any increase in the count.

The directory$open-dir operation opens a child directory such that multiple processes

can access it concurrently.

In presenting the lile system example we will concentrate on showing the

interface of the file and directory data abstractions and the code for the file and

directory serializers. It will not be necessary to show the implementation of the file and

directory data abstractions, although we will discuss somre of the details as necessary.

Figures 8 and 9 present the interfi'ce specilications for the directory and file

clusters. As a first approximation, these are the same interface specifications that are

used for the correspondinrg directory and file serializers. I-ach operation interface

names (lie operation, the types of' the argulents, the types of the rettrned objects, and

the I) pes of exceptions that can he signalled. We inchdc some colmments that indicate

- 153 -

-', --

I " k. :- - . . . ' I ' HI I "' .,,.-, iw • ' ,, .,. e "! , "r '4 , .' .',. i

Figure 8. File interflce

A file may be described as an array of pages that exists on remote
storage. It can be randomly accessed, and can be extended or retracted
at one end. An open file can only be obtained through use of a directory
openprivate or openpublic operation. No operations can be performed on
a closed file except for isopen. The following file operations are
available to the user (others will be discussed later in the chapter):

getparent (file) returns (directory) signals (file closed)
Get parent directory of file if file is open, otherwise signal
file-closed.

getname (file) returns (string) signals (fileclosed)
Get name of file as a string if file is open, otherwise signal
file-closed.

getsize (file) returns (int) signals (file closed)
Get number of pages in the file if it is open, otherwise signal
file closed.

isopen (file) returns (bool)
Return true if file is open, false if it is not.

read page (file, int. page) signals (file-closed, bounds)
Copy a page of information from the given location in the file i. to
the given page in primary memory, provided that the file is open.
Signal bounds if the location is invalid (less than 0, greater than
or equal to the size). Signal file closed if the file is closed.

writepage (file, int, page) signals (file-closed, bounds)
Copy a page of information from the given page in primary memory to
the given location in the file. Signal bounds if the location is
invalid, file-closed if the file is closed.

close (file) signals (fileclosed)
Close file if it is open, otherwise signal file-closed.

add page (file. page) signals (file closed, no room)
Add a page to end of file, signalling if the file is closed or there
is insufficient room to complete.

rein page (file) signals (file closed, empty)
Remove a page from the end of the file, signalling if the file is
closed or the file has no pages.

-154-

7 7.

For concurrent access, there are the following classes of operations:
Info: can overlap with any but sole access
Read: can overlap with read or info access
Write: can overlap with info access
Sole: can not overlap

The operations in each class are:
Info: get parent, get name, get_size, is open
Read: read pagejIWrite: write page
Sole: close, add-page, rem-page

1

- 155 -

r u '4 I'L

Figure 9. Directory interface

A directory functions as a symbol table of entries, where each entry is
either a file or another directory. Entries can be created, deleted or

*1 opened using the directory. The following operations are publicly
available:

root () returns (directory)
Get root directory, which is always open (this operation does not
require possession).

get parent (directory) returns (directory) signals (none, dirclosed)
Get parent directory, signalling none if the given directory is the
root directory, and dir closed if the given directory is closed.

getsize (directory) returns (int) signals (dir_closed)
Get number of entries in the given directory, signalling if the
directory is closed.

getname (directory) returns (string) signals (dirclosed)
Get name of the given directory, signalling if the directory is
closed.

isopen (directory) returns (bool)
Return true if the given directory is open, false if it is not.

info (directory, string) returns (bool, int, bool)
signals (none, dirclosed)

Return information about the named entry: a boolean indicating the
kind of entry (true if entry is a file, false if not), the size (in
pages if a file, number of entries if a directory), and a boolean
indicating whether the entry is open. Signal appropriate errors if
they occur.

next (directory, string) returns (string) signals (none, dirclosed)

Get next entry name after named entry, using string ordering.

openprivate (directory, string) returns (file)

signals (none, opened, dir_closed)
Open named file in given directory for sole use, signalling
appropriate errors if they occur.

- I5-

...... , 'A

openpublic (directory, string) returns (file)
signals (none, locked, dir closed)

Open named file in given directory for shared use, signalling
appropriate errors if they occur (locked is signalled if entry is
open for sole use).

opendir (directory, string) returns (directory)
signals (none, dirclosed)

Open named child directory in given directory, signalling appropriate
errors if they occur.

close (directory) signals (dirclosed, open_entries, root)
Close the given directory, signalling if it is the root, or it is
already closed, or open entries exist.

adddir (directory, string)
signals (no room, duplicate, badname, dirclosed)

Add new (empty) child directory entry with given name. Signal if

there is insufficient room, an existing file or directory of the same
name, a bad directory name given, or the directory is closed.

addfile (directory, string)
signals (no_room, duplicate, bad name, dirclosed)

Add new (empty) file entry to directory. Signal if there is

insufficient room, an existing file or directory of the same name, a
bad file name given, or the directory is closed.

delete (directory, string) signals (none, opened, dir_closed)
Delete named entry in given directory, signalling appropriate errors.

If entry is a directory, all of its entries are deleted as well.

There are four classes of operations requiring possession:
Fixed info: can overlap with any but sole access
Variable info: can overlap with variable or fixed info access

Opening: can overlap with fixed info access

Sole: can not overlap

The operations in each class are:
Fixed info: get parent, get name, is-open
Variable info: get size, info, next
Opening: open_private, openpublic, open_dir
Sole: close, add dir, add file, delete.

- 157 -

-~ -in -'~

-. . . - 4

the intended effects of the operation. After the operations have been described, we

divide the operations into classes based on which operations may overlap in execution

with which other operations (when executed on the same serializer object).

One way to design a system that involves concurrency is to design it for a

single-process system first, then add multiple processes for portions of tasks that can be

performed concurrently, and add serializers to control access to shared objects. In the

ftie system example, however, we have assumed that the file system would be accessed

by multiple processes. This assumption has influenced the choice of operations,

especially in providing for opening and closing of files. Even so, the single-process

model of design is useful. Concurrent execution of operations is only permitted where

the effects on the state of the files are the same as some serial execution of operations

where concur-ent execution is prohibited. It may not be possible to obtain the

maximum concurrency in this fashion, since certain operations could be allowed to

execLte concurrently in part. But increased concurrency is purchased at the cost of

increased complexity.

One simplifying assumption hls been made regarding file objects that may

appear to be tinrealistic. 'liat is, a lile on secondarN, memory has at most one life object

in primary mcmory controlling access (this is also true Ijr directories). Unfortunately,

this allows a user to open i file once to obtain the controlling object, then close the file

several tittles, thercb completely closilg the file to access by other processes. To

remedy this, in a real systcm it would he desirable to have a second level of indirection

for files such that every, stuccessful execution of an openjublic operation returned a

158 -

unique controlling ile object. 'lbe additional level of file object would be used to

create a separate file object for each open-public operation, such that the file abstraction

presented to the user would only allow a file object to be closed once. A full

presentation of both levels of file has no advantage over a presentation of a single level,

so we only discuss the systemfile version of files, which is supported by the file cluster

and its associated serializer.

7.2 File and directory serializers

Figures 10 and 11 on the following pages present the directory and file

serializers. Note that we have added several operations that are "hidden" to the

normal" user. We would expect access to these operations to be regulated through

some library mechanism, such that a normal useI would see a subset of the interface of

an abstraction, while a "privileged" user would be allowed to access more of that

interface. In some cases, and in particular for this file system, access to privileged

operations would be restricted to only allowing use by implementations of particular

abstractions, rather than allowing access based on the identity of the person using the

system.
18

I8. Such protection could also be provided to sole extent by esiablishiing it bl:k structure for clusters
and seriali/ers. We have chosen to retain (l CLs approach to niodules, and asstime thai proLeclion is
accomplished by other mcans.

- 159-

.. ...*. I-

Figure 10. File serializer

file = serializer is

% The following operations are publically available.

getparent. % get parent directory
getname, % get name of file
get size. % get # of pages in file
is-open, % test open-ness of file
readpage, % read a page
write page. % write a page
close, % close file
add page, % add a page to end of file
rempage, % remove a page from end of file

% Note: delete can only be called from directory$delete
delete. % delete the contents of a file

% The wrap operation can only be used by the file cluster
% to turn a _file object into a file serializer object.
wrap

% The operations with cvi arguments can be split into four
% classes, depending on which operations can overlap in
% execution with which other operations.

% - Class - - Overlap -
% Info: Info, Read, Write
% Read: Info, Read
% Write: Info
% Sole:

% - Class - Members -

% Info: get_parent, getname, get_size, isopen
% Read: read page
% Write: writepage
% Sole: close, addpage. rem_page, delete

rep = struct[slow_q. fastq: queue,
solec, write_c, read c. info_c: crowd,
f: _file]

wrap = proc (_f: file) returns (cvt)
return (rep$(f: f, fast_q, slowq: queueScreate(),

sole_c. info-c, readc, writec: crowd$create())
end wrap

getparent = proc (f: cvt) returns (directory)
signals (fileclosed)

enqueue f.fast q until crowd$empty(f.sole_c)
join f.info_c

- lbO-

* ~~* * ,*16 - , . * *

Elli

return (_file$getparent(f.f)) resignal file-closed
end

end getparent

get name =proc (f: cvt) returns (string)
signals (file closed)

enqueue f.fast_q until crowd~empty(f.sole_c)
join f.infoc

return (f.f.name) resignal file_closed
end

end get-name

get size =proc (f: cvt) returns (int)
signals (file closed)

enqueue t.fast_q until crowd$empty(f.sole_c)
join f.infoc

return (f.f.size) resignal file_closed
end

end get-size

is_open = proc (f: cvt) returns (bool)
enqueue f.fast_q until crowd~empty(f.sole_c)
join f.infoc

return (_file$isopen(f.f))
end

end is-open

read page = proc (f: cvt, index: int, p: page)
signals (file-closed, bounds)

enqueue f.fast_q until crowd~empty(f.sole_c)
& crowd~empty(f.writec)

join f~read-c
fi le$read(f.f, index, page) resignal file_closed. bounds

end
end read page

write page = proc (f: cvt, index: int, p: page)
signals (file_closed, bounds)

enqueue f.slowq until queuelempty(f.fastq)
enqueue f.fast_q until crowdSemnpty(f.sole_c)

& crowd~einpty(f.read_c) & crowdSeinpty(f.write_c)
join f.write-c

fi le~write(f.f, index, p) resignal file-closed, bounds
end

end write page

close = proc (f: cvt) signals (file closed)
4 enqueue f.slowq until queue$empty(f.fastq)

enqueue f.fast_q until crowd~emnpty(f.sole_c)
& crowdSeinpty(f.info_c) & crowd~empty(f.readc)
& crowd~einpty(t.write c)

*161 -

join f.sole c
_file~close(f.f') resignal file-closed
end

end close

add page = proc (f: cvt, p: page)
signals (file closed, no room)

enqueue f.slowq until queue$empty(f.fast_q)
enqueue f.fastq until crowd$empty(f.sole_c)

& crowd$empty(f.info_c) & crowd$ewpty(f.readc)
& crowd$empty(f.write_c)

join f.sole_c
_file$addpage(f.f, p) resignal file-closed, no_room
end

end add page

rem-page =proc (f: cvt)
signals (file closed, no-room)

enqueue f.slowq until queue~empty(f.fast_q)
enqueue f.fastq until crowd$empty(f.sole_c)

& crowd$empty(f.info_c) & crowd$empty(f.readc)
& crowd~empty(f.write_c)

join f.sole -c
_file$rem-page(f.f. p) resignal file-closed, no_room
end

end rem page

% Note: called by _dir$delete

delete = proc (f: cvt)
signals (file open, file deleted)

enqueue f.slowq until queueiempty(f.fast_q)
enqueue f.fastq until crowd$empty(f.sole_c)

& crowd$empty(f.info_c) & crowd$enmpty(f.readc)
4 & crowd~empty(f.write c)

join f.sole -c
V % Note: use hidden _file$delete operation
k- % to delete contents of file. _file$delete is
* % only used by file$delete.
L file$delete(f.f. p) resignal file_open, file deleted

end
end delete

end file

-162-

i71

Figure II. Directory serializer

directory = serializer is
root, % get root directory
get parent, % get parent directory
get name, % get name of directory
is_open, % test open-ness of directory
getsize, % get # of entries
info, % return info about tamed entry
next, % get next entry name after named entry
open_private, % open file for sole use
open_public, % open file for sharing
open_dir, % open sub-directory
close, % close this directory
adddir, % add new sub-directory entry
add_file, % add new file entry
delete, % delete named entry

% The wrap operation can only be used by the -directory cluster
% to turn a _directory object into a directory serializer object.
wrap

% The operations can be split into six classes, depending on
% which operations can overlap in execution with which other
% operations.

% - Class - - Overlap -
'% Root: Root, Fixed, Variable, Opening, Sole
% Fixed info: Root, Fixed, Variable, Opening
% Variable into: Root, Fixed, Variable
% Opening: Root, Fixed
% Sole: Root

% - Class - - Members -
% Root: root
% Fixed info: getparent, get_name, isopen, getsize
% Variable info: info, next
% Opening: openprivate, open_public, opendir
% Sole: close, add dir, add file, delete

rep = struct[s ow__q, fastq: queue,
sole_c, open c, varc, fixedc: crowd,
dir: _directory]

% The wrap procedure is used by the directory cluster
% to turn a directory object into a-directory serializer
7 object. This operation can only be used by the
% directory~root and _directorySadd dir operations.

wrap = proc (d: directory) returns (cvt)
return (rep$create{dir: _d,

-163-

J -t *A;

ahIJh

slow_q, fastq: queue$create(),
solec, open c, var c, fix c:

crowd$create())
end wrap

root = proc ()returns (directory)
% note: _directory~root uses the wrap operation
return (directory~rooto)
end root

get parent =proc (d: cvt) returns (directory)
signals (none, dir_closed)

enqueue d.fastq until crawd$empty(d.solec)
join d.fix_c

return (_directory$getparent(d.dir))
resignal none, dir-closed

end
end get parent

get name = proc (d: cvt) returns (string)
signals (dir closed)

enqueue d.fastq until crowd$empty(d.sole_c)
join d.fixed~q

return (_directory~getname(d.dir)) resignal dir-closed
end

end get name

is-open =proc (d: cvt) returns (bool)
enqueue d.fastq until crowd$empty(d.sole_c)
join d.fixed~q

return (_directory~isclosed(d.dir))
end

end is open

get size =proc (d: cvt) returns (int)
signals (dir closed)

enqueue d.fastq until crowd$empty(d.sole_c)
join d.var_c

return (_directory$getsize(d.dir)) resignal dir-closed
end

end get size

info = proc (d: cvt. name: string)
returns (bool, int, boo]) signals (none, dir closed)

enqueue d.fastq until crowd$einpty(d.sole_c)

& crowd$empty(d.open_c)
join d.var_c

file_ ness: bool, size: int, open_ness: bool
directory$info(d.dir) resignal dir-closed, none

return (file ness, size, openness)
end

-7 164'

-2

end info

next =proc (d: cvt, name: string) returns (string)
signals (none, dir-closed)

enqueue d.fast q until crowd~empty(d.solec)
& crowd$enpty(d.openc)

join d.varc
return (_directory~getnext(d.dir))

resignal dir-closed, none
end

end next

open private =proc (d: cvt, name: string) returns (file)
signals (none, opened, dir -closed)

enqueue d.slow q until queue~empty(d.fastq)
enqueue d.fast -q until crowd$empty(d.sole.S)

& crowd$empty(d. open c)
join d.open_c

return (_directory$openprivate(d.dir, name))
resignal dir-closed, none, locked

end
end open private

open public = proc (d: cvt, name: string) returns (file)
signals (none, locked, dir -closed)

enqueue d.slow -q until queue$empty(d.fastq)
enqueue d.fast q until crowd~empty(d.solec)

& crowd~empty(d.openc)
join d.open~c

return (_di rectory~open publ ic(d.dir, name))
resignal dir-closed, none, locked

end
end open public

open dir proc (d: cvt, name: string) returns (directory)
signals (none, dir-closed)

enqueue d.slow q until queue$empty(d.fastq)
enqueue d.fast q until crowdSeipty(d.solec)

& crowd~eipty(d.openc)
join d.open~c

return (_di rectory~open dir(d.di r, name))
resignal dir closed, none

end
end open dir

close = proc (d: cvt)
signals (dir_- closed, open_entries)

enqueue d.slow -q until queue~eipty(d.fastq)
enqueue d.fast q until crowd~emnpty(d.solec)

& crowd~einpty(d.var c) & crowd$empty(d.fixc)
& c rowdSemipty(dopen c)

-165-

join d.solec
directory$close(d.dir) resignal dir-closed, open_entries
end

end close

add_dir =proc (d: cvt, name: string)
signals (no room, duplicate, bad-name, dir_closed)

% note: _directory$add-dir uses the wrap operation
enqueue d.slowq until queue$empty(d.fast_q)
enqueue d.fastq until crowd$einpty(d.sole_c)

& crowd$eipty(d.varc) & crowd$empty(d.openc)
join d.solec

_directory$adddi r(d.dir)
resignal no_ room, duplicate, bad_name, dir-closed

end
end add-dir

add file =proc (d: cvt, name: string)
signals (no room, duplicate, bad_name, dir_closed)

enqueue d.slowq until queue$empty(d.fast_q)
enqueue d.fastq until crowd$empty(d.solec)

& crowd$empty(d.varc) & crowd$empty(d.openc)
join d.sole c

-directory$addfile(d.dir)
resignal no_room, duplicate, bad_name, dir-closed

end
end add-file

delete =proc (d: cvt, name: string)
signals (none, opened, dir_closed)

enqueue d.slowq until queue$empty(d.fastq)
enqueue d.fastq until crowd$empty(d.solec)

& crowd$empty(d.varc) & crowd$empty(d.fixc)
& crowd$empty(d.openc)

join d.sole_-c
directory$delete(d.dir) resignal dir-closed, open entries

end
end delete

end directory

16I6 -

To distinguish between the data abstractions and the serializer abstractions of

the same interface, we will use the names directory and file for the serializer

abstractions, and _directory and ile for the data abstractions. '!1'e user in a multiple

process system would only be allowed to access the operations of the serializer

abstractions, which would utilize the operations of the data abstractions.

In the above two serializers, there are classes of operations that can be strictly

ordered on the basis of the execution of any operation from one class excluding the

execution of any operation from another class. The order is from most permissive to

least permissive, with operations that return information generally being the most

permissive, since they can be executed concurrently. This ordering allows us to

construct serializers that follow the general plan of the readers-writers problem. If an

operation can :,xecute concurrently with another invocation of the same operation, it is

considered to be a reader: otherwise it is a writer. In the above serializers, we have

adopted a readers priority approach, with the information gathering operations having

higher priority. It would be equally correct to adopt a FIFO approach or a writers

priorily approach, but different performance would result.

The restrictions on simple serializers must be relaxed slightly to allow us to

write the ile and directory serializers. The most important addition is the exception

nmechanism, which includes a signals clause in the operation interface and a resignal

clause at the end of any statement. "lI'is addition does not greatly add to the complexity

of our model, since we only use the exception mechanism in the same manner as the

-167-

return statement. 19

We retain the important limitation, which is to return or signal directly after

invoking the operation of the data abstraction. The other addition is to allow local

variables, which we use in direciory$info to hold the results of an invocation that returns

multiple objects. The effect of this addition is also minor, since we immediately return

those results unchanged.

7.3 Specifications for file and directory serializers

The specifications for the file and directory serializers are similar to the

readers priority readers-writers problem. Therefore, we will only present illustrative

examples, rather than full specifications. One 'iseful abbreviation is to use the first

letters of the operation classes, rather than the operations, to name transactions. This

gives us the following transaction names for file operation classes:

1: an InFo class transaction

R: a Read class transaction

W: a Write class transaction

S: a Sole class transaction

I-or directory operation classes, we can use the same specifications, except that the

19. 1I1 CI U. W hen al operation signals all exception. (he invoc;Ii m termillates, an d IhC imimedlai
cillet is gi enl the opfrtnuity to handle (he exception. A comnmonc method o' handling aln exception is to
reflect it to yet atl ulher lewcl via resiglnl.l. An ino,tition t hal sigimls an exceplitm is no(restimed. For
lIilrther details. see 1I iskov 79a1.

-168-

-7-

'Y,

transaction symbols have the Ibllowing interpretation:

I: a Fixed Info class transaction

R: a Variable Info transaction

W: an Opening class transaction

S: a Sole class transaction

In the remainder of this section we use the class names of the file serializer (Info, Read,

Write, and Sole) with the understanding that the remarks also apply to the

corresponding directory classes.

The most important specifications are those that relate to the exclusion of

certain operations by others. If these specifications are violated we obtain invalid result

values. The complete exclusion specifications are:

I-join < S-join D I-leave < S-join

R-join < W-join D R-leave < W-join
R-join < S-join D R-leave < S-join

W-join < R-join D W-leave < R-join

Wi-join < W2-join D Wi-leave < W2-join
W-join < S-join D W-leave < S-join

S-join < I-join D S-leave < I-join

S-join < R-join D S-leave < R-join
S-join < W-join D S-leave < W-join

SI-join < S2-join D Si-leave < S2-join

A number of priority specifications might be proposed. The readers priority

speciica1tion used in Chapter 6 is:

- 169-

- - -

WI-enter < W2-enter < Ri-enter < WI-join D RI-join < W2-join

The same specification clause holds for the file and directory serializers. To give more

complete priority specifications, we introduIce two new classes of transactions: SW,

which contains all Sole and Write transactions; and IR, which contains all Info and

Read transactions. Using these new classes, the priority specification becomes:

SWI-enter < SW2-enter < IR I-eniter < SWI-join
D IRI-join <(SW2-join

The following specification specifies concuirrency for Read transactions, and is

a slight adaptation of the concuirrency specification in Chapter 6:

RI-enter < R2-enter < RI-leave
& GX(RI-enter, R2-enter, W*-enter)
& GX(R I-enter, R2-enter, S*-enter)

D R2-join < Ri-leave

The difference lies in the addition of the exclusion of enter events from the Sole class of

transactions. 'Teabove specification can also be proven for- Read and Info transactions

by substituiting R for R I and I For R2 to get one clause, and I for R I and R ror R2 to get

* the other. Finally, the l'ollowing specification indicates where a Wi ite transaction must

over-lap with an Info transaction:

W-enter < 1-cinter < W-Ieave

& GX(W-enitet, I-eniter, S*-enter) & GX(W-eniter, I-enter. W*-enter)

D I-join < W-Ieave

-170-

, ~, , J

*~iia- J_

The service specifications are as simple as for the readers-writers problem:

each request must receive a reply. The service specifications are:

@1-enter D @l-exit

@R-enter D @R-exit
@W-enter D @W-exit

@S-enter D @S-exit

We have shown that the specifications for the file and directory serializers are

similar to the readers priority example used in Chapter 6. This may not be surprising,

since the problems and solutions are similar, but the lack of such a surprise is precisely

one of our goals.

One point about the specifications that we have discovered through the above

example is the usefulness of dividing the operations into classes, and providing the

specifications for the classes rather than for the single operations. Using class-oriented

specifications promises to provide more concise specifications while retaining the

precision we desire.

* The verification techniques we discussed in Chapter 5 and Chapter 6 remain

alid fr both the file and directory serializers. Ilic only additions we would make

would be to introduce classes of operations into the verification as we have li)r the

specification. When two scrializer operations are sLifliciently similar it should be

possible to use the proof of one in the prooxf of the other, as is the case for file

operations in the same specification class. We will not propose techniques for

determining how mich similarity is sufficient, although we regard the issuiC as being

-171 -

worthy of further research.

7.4 Guidelines for addition of serializers

In a system where data abstractions are used, we believe it likely that some

library of abstractions will become usefil, and eventually indispensable. Further, we

consider it likely that many of these abstractions will be initially designed for a

single-process environment. 20 If we are to use these data abstractions in a

muiltiple-process environment, and the corresponding objects are to be shared between

processes, we can either rework the abstractions for that purpose, or we can provide a

mechanism for controlling concurrent access that requires no change to the data

abstractions. The serializer construct was designed along the latter lines. This section

discusscs how that approach could be made largely automatic.

As a first approximation, we assume that each operation has exclusive use of

the resource, then introduce serializcr abstractions as replacements for data abstractions

in order to permit concurrency while prohibiting conflict and deadlock. lliis is a simple

strategy, and is not intended to cover all situations, although we believe it to be an

iniportant first step.

When a serializer abstraction is substituted For a data abstraction in a program,

yet the data abstraction is retained as part of the iniplementation of the serializer

21. Even if for no other reason ihan programmer inertia.

-172-

abstraction, we may be faced with problems that result from having two abstractions in

the place ofone. If we wish to integrate a newly serialized abstraction into a system that

has been created with the old data abstraction, we need a linking mechanism that will

allow the operations of the serializer abstraction to be substituted for operations of the

original abstraction in old user programs. If the interface to the serializer abstraction is

compatible with the interface of the original data abstraction, and both abstractions

have isolated representations, then this linkage mechanism allows graceful upgrading of

programs that use the original data abstraction.

However, the representation of the original data abstraction is exposed to the

operations of that data abstraction. Here the splitting of the original abstraction is more

difficult. In most cases, we expect that an automatic "rewrite" of the data abstraction

would be easi'y made by a program. If we call the type introduced by the data

abstraction DA, and the type introduced by the serializer abstraction SA, then the

following rules allow such an automatic rewrite:

* Occurrences of DA in the cluster for DA are changed to SA, including

xcicurrences of DA in the interface of operations of DA, provided that
they do not result from uses of cvt. Thus, a component of the
representation of)A that was an object of type I)A would become an
object of type SA. In the file system example, this would be Irue for the
case of the get-parent operation of (lie directory abstraction, since the
getparent operation of _directory (DA) must return a directory object
(SA). and not a -directory object (i)A). This is also true of the

open private, open-public, and open dir operations.

* Operations of DA that have cv appearing in their headers must have DA

appear in the interfitcc specilicauions where a corresponding cv appears
in the operation header. These are operations that cxplicitly access tie
representation of I)A, so a conversion of I)A to SA is not rcasonable.

- 173-

.~ V --- r€- .,- ."a i

* The up and down operations convert between the representation and the
DA type, not the SA type. This is consistent with the treatment of v.

• We introduce an operation, called wrap, that takes a DA object and

returns a newly created SA object that encapsulates the DA object. The
wrap operation is used to create a new SA object in operations that create
new DA objects and need (due to our first transaformation) to use SA
objects.

if the above translation results in a type error then the automatic rewrite is not

performed, and a manual rewrite must be performed. SLIch a case could arise from an

operation that accepted an argument of type DA, then explicitly used down to attempt

to access the representation. The transformation would have changed the use of DA

into SA, but the down operation would only work for an object of type DA, and fails

(due to static type checking) with an SA object.

In addition, a data abstraction may have to be rewritten if it supports cyclic

objects. If operations of DA call operations of SA, which in turn call operations of DA,

a cyclic data structure can cause deadlock by having access to an object being blocked

by an incomplete access to the sa-ne object by the same process. Access to cyclic objects

is discussed later in this chapter.

'lere are two reasons to believe thai a rewrite of the original data abstraction

will not be a difficult process even if it cannot be done automatically. First, the amount

of detail to be changed is likely it) be small. After all, the intent of the data abstraction

has not changed. llcre is only the additional distinction between seriali/cr abstraction

and data abstraction. Second, we believe that it will be rare that any code except for the

-174-

K implementation of the serializer and data abstractions will be allowed to use the data

abstraction. The intention of this transformation is to make the rest of the system use

the serializer abstraction. Therefore, the number of places to be changed is also likely

to be small.

In the file system example, there is a case where the use of the automatic

splitting of types may provide serializers where none are needed. In particular, if the

directory information is implemented using a file, then the serializer for the directory

may provide sufficient protection for the file object used to implement the directory. In

such a case, the transformation from DA to SA would provide an unnecessary level of

serializer. A rewrite of the _directory cluster would then be desirable to promote

efficiency. This efficiency argument actually works in favor of our separation of data

and serializer abstractions, since if they were inextricable, the optimization described

could not be performed.

The above rewrite process has been applied to the _file and _directory

serializers. In particular, the operations _diircctory$open-private and

_directory$open-public now return file objects, which arc supported by the file

L serializcr. Further, the operation directory$open_dir returns a directory object, which

is supported by the directory serializcr. "lie wrap operations shown in the file and

directory scrializers are used to enclose a _file or _directory object in a file or directory

serializer. Illie wrap operations are used whenever a new _file or -directory object is

created.

-175 -

_____ ____I.

In any reasonable implementation of the _directory cluster there will be a list

of the open files and child directories for any directory object. In this case, the

automatic rewrite we mentioned above informs Is of a type conflict: the list of open

files and directories must be for the file and directory objects supported by the

serializers, and not the _file and -directory objects supported by the clusters.

7.5 Iligher-level transactions

Suppose procedures P and Q use operations on a shared data object X of type

T. We have recommended that a serializer object should be introduced for X to ensure

that the operations of T performed on X do not interfere with each other. However, the

user may intend that P and Q do not overlap. 'l'he serializer for object X does not

enforce this r striction. One solution is to introduce a further encapsulation of X in

order to perform operations P and Q such that they do not overlap.

A difficulty with the introduction of further abstraction levels is that the

designer of a system may not know how the user will be using the system, and cannot

provide the appropriate abstractions in advance. This inability to forecast is certainl

present in our file system exaniple, since the uscr may wish to have a process perform

several operations on a file (or on several liles) such that no other process will access the

file (or files) while those operations are being performed. 'llie file system example

provides no solution to this problem in general, although we can attack certain special

cases.

-176-

4X-

A limited solution to the above problem can be achieved by adding a new

operation, update, to the file serializer. The text of this operation is shown in Figure 12.

The update operation performs a sequence of read operations on a file, then performs a

computation supplied as a procedure by the user on data supplied by the user, then

performs a sequence of writes on the same ile. In our simple solution, the entire

update operation is performed without allowing overlapping reads or writes on the file.

If more concurrency is desired, update operations that do not have overlapping sets of

pages can be permitted to proceed in parallel, providing that the underlying -file

abstraction will permit this.

- 177 -

Ix

I'iguire 12. Update operation

% The update operation is intended to perform a sequence of
% reads, an arbitrary computation, and a sequence of writes.
% The entire procedure should executed without overlapping
% other write operations or other update operations. This
% procedure resignals an error on reading or writing, or an
% abort error from the arb procedure. An error that is
% resignalled after the first write has been finished will
% leave the writes only partially completed.

update = proc [dt: type]
(f: cvt, reads, writes: spair, arb: pt, data: dt)

signals (file-closed, bounds, abort)

pair = struct [pgnum: int, pg: page]
spair = sequence [pair]
pt = proctype (dt, spair, spair) signals (abort)

% wait for write access to resource to be OK
enqueue f.slow_q until queue$empty (f.fast_q)
enqueue f.fast_q until crowd$empty (f.sole_c)

& crowd$empty (f.writec)
& crowd$empty (f.read c)

% join the crowd to show that we are going to write

join f.write-c

% perform the reads into the given memory pages

% from the given file pages
for p: pair in spair$elements(reads) do

file$read(f.f, p.pgnum, p.pg)
end

% perform the arbitrary computation
% (modifying the given memory pages)
arb(data, reads, writes)

% perform the writes from the given memory pages
% into the given file pages
for p: pair in spair$elements(writes) do

file$write(f.f, p.pgnum, p.pg)
end

end resignal file closed, bounds, abort

end update

-178-

................
.- .*,,,.

8. Conclusions

In this thesis we have been concerned with verifiable control of concurrent

access to resources. In this pursuit we have presented a language construct for

controlling concurrent access, a definition of the semantics of this construct, a

specification language for describing varieties of concurrency control for instances of

the construct, methods to verify that instances of the construct satisfy their

specifications, a program for performing this verification automatically, and a

discussion of some of the interactions possible between instances of this construct.

In separating the control of concurrency from the data access, we have

attempted to apply this separation to the programming language, the semantic model,

the specifications, and the verification system. The objective has been to modularize

the construction and verification of programs involving concurrency. By this

modularization, the problems associated with construction and verification become

more tractable. The results of our research indicate that this modularity can be

achieved, at least for the simple serializers we have discussed.

In this chapter we discuss how extensions to serialiers require extensions to

our verification techniques. Most of these extensions require significant further

research. Then we present closing remarks to sum up the contributions of this thesis.

179-

1,4

8.1 Verification of serializer extensions

In this setion we briefly consider how extensions to serializers affect our

semantic model and verification methods. This is the area where further research is

most necessary and most difficult. Our success in verifying simple serializers can be

largely attributed to the limitations we have imposed. We believe that further success in

verifying concurrency control lies in selective relaxation of these limitations.

8.1.1 Adding boolean variables and boolean expressions

To add simple boolean variables and boolean expressions to serializers

requires the following changes to the semantic model:

* The node graphs must be extended to handle declaration and assignment

of boolean variables. These variables must further be distinguished as
either local variables, which are instantiated on each transaction; or
global variables, which are components of the serializer representation.

The semantic equations must be extended to handle evaluation of

boolean expressions. This will require examining finite histories for the
last assignmenti to any boolean variable. One of the most importa.lt
changes to evaluation is that evaluation must take place in ihl context of a
transaction, since expressions may involve local variables.

*'There must be some indication of the initial state of a serializcr object.
This is easily accomplished by representing the serializer state as the
result ofsonle initial assignlments to representation coinponents.

- 180-

. . , .

To illustrate the kinds of scrializers and verifications that are possible with the

addition of boolean variables, consider the case where we are limited to boolean

variables as part of the representation, and the only legal boolean expressions are true,

false, and simple components of the representation. As an example, we present the

following abbreviated serializer:

xop = proc (x: cvt,
enqueue x.ql until x.b & crowd$empty(x.c)
join x.c; ...; end
x.b := false
end xop

yop = proc (x: cvt ...

enqueue x.q2 until -x.b & crowd$empty(x.c)
join x.c; ...; end
x.b := true
end yop

Suppose that x.b is initially trLIe. We would like to prove that the number of

executions of xop is equal to or one greater than the number of executions of yop. This

specification could be written as:

(#X-exit = #Y-exit) I (#X-exit = #Y-exit + 1)

Informally, suppose that the above specification is not satisfied, and that it is due to

#X-exit > #Y-exit + 1. Then there must be two events XI-exit < X2-exit that occur

without an intervening Y-exit. Note that the x.b is set to False after X l.cave, and

remains false until after sonic Y-leave. 11' no such Y-leave event occurs, then the

guarantee remains false, and X2-dcqueue cannot occur. 'Ilierefore, there can be no

such events. To prove that #Y-exit cannot exceed #X-exit, we note that the only way

that #Y-exit could exceed #X-exit is for the initial exit event to be so nc Y-exit.

However, we assumed that the variable x.b was initially true, which prohibits

.... r"

-l181-

Y-deqLeule from occurring.

The addition of boolean variables provides additional information about the

past execution of operations. As the above informal proof shows, the semantic model

can capture this information as well. Extending the verification rules to handle such

situations is left as a topic for future research.

8.1.2 Conditionals

The addition of boolean variables and expressions is of limited usefulness if

the only test of a boolean expression remains limited to the guarantee on a queue.

Another extension that can be added at this point is conditional statements, with the

form

if expression
then body of slatements

else body of stalements
end

The else part is optional. In the semantic model we need to introduce a new kind of

node, the if node. The if node tests the results of the boolean expression (we will

discuss a more general model for evaluation below), and conditionally executes the

appropriate body of statements based on the result. "I'hc next node after the last node of

either the [hen body or the else body is the node that corresponds to the statement

directly following the if statement. By the introduction of conditionals, the

"node graph" has become a true directed graph.

- 182 -

i7
'l l

Although the modelling of conditionals poses no severe difficulties, the

addition of conditionals complicates the specification language. Consider the following

operation (we have also relaxed our requirement for a strict correspondence between

serializer and resource operations):

xct = proc (x: cvt, d: data)
enqueue x.q until crowd$empty(x.c)
if data$cond(d)

then join x.c
resource$fast xct(x.res, d)
end

else join x.c
resource$slow xct(x.res, d)
end

end
end xct

What event does X-join denote? There are potentially two different events, and the

event to occur depends on the data presented to the operation.

The solution we recommend is simple: for every test in a conditional

statement, assume that the test evaluates to a particular boolean value (true or false). If

the specilication clause can be verified for every permutation of the conditional tests,

then it is verified for the operation. In the above example, we would effectively need to

verify two operations: one where data$cond(d) was true immediately after the enter

event, and one where data$cond(d) was false.

-183-

8.1.3 Loops in serializer operations

Just as conditional statements introduce ambiguity about which nodes can be

executed, iteration and recursion introduce ambiguity about how often a node is

executed. The doubt is significantly worse, however, since the number of possible

executions of a loop is not bounded.

When a point in a serializer operation can be passed many times during the

execution of a transaction, an event is not just an execution of a node for that

transaction, but a particular execution of that node. We can adapt the method of

handling conditionals to handling loops by assuming particular numbers of iterations

for each loop. If the specifications can be shown to hold for any choice of such

numbers, then the specifications are verified for the operation as a whole, provided that

all of the loops terminate. Induction can be used by assuming that the specification

holds for some particular number N of executions around a loop, then showing that the

specification holds for N+ I executions (plus a basis proof for N = 0). In order to

prove service specifications, an additional proof that each loop terminated would be

necessary.

11

j- 184-

.. . . .

8.1.4 Arbitrary expressions and invocations

The introduction of arbitrary expressions into serializers has the following

effects:

* The semantic model must include arbitrary types and values of those

types, including user-defined types.

* The semantic model must be provided with events to mark both the start
and the end of an invocation.

* The specification language must be merged with a larger specification
language. Values must be named and functions on those values defined.
Concurrency specifications, data abstraction specifications, and
procedural specifications may be mutually interdependent.

* The serializer verification system must be joined to a more general
verification system. While it is our hope that the two kinds of verification
systems can be kept modular, we have no evidence at this time to support
this hope.

With arbitrary expressions and invocations, some of the verification

techniques we have described may be invalid for sonic situations, sonic of which are:

* Some invocations may not always terminate. If we use such invocations,

then we must be prepared to prove service where applicable. If we
cannot prove service, then we are raced with a new potential source of
lack of service: indefinite possession of the serializer object. In terms of
Our current model we would be faced with a finite complcic history (since
it would be possible Ilir no further scrializer events to occur) where a

4 transaction would be in possession at the end of the history. Since many
of our verification rules depend on no transaction being in possession at
the end of a finite complete history, and no crowds being occupied, our
techniques are not applicable where termination cannot be proved. 'Ihe

- 185-

problems of combining our techniques with proofs of termination for
invocations remain for future research.

If we allow side effects in the evaluation of guarantees evaluation it

becomes necessary to introduce events to model the beginning of such
evaluation, and to indicate the order in which guarantee evaluation is
perforned.

Recursive operations provide one more problem. When we assume that

an invocation used by a serializer terminates, and thereby prove service
for the serializer operation, such a proof must not be circular. If the
invocation termination depends on the service proof, then the service
proof is not valid unless one can prove that the level of recursion is
bounded.

All of the above issues are left for further research.

8.1.5 Priority queues

The monitor construct presented in [Hoare 741 permits the use of prioriy

queues, which obey a "first in, best out" discipline. A serializer example that makes use

of priority queues is presented in Appendix Il l.

,.*, In using priority queues, we do not (usually) wish to allow the addition of

requests to a queue to indefinitely postpone the progress of earlier requests. For the

disk scrializer we can prove that the requesi operation guarantees service since, when we

are serving one queue, its site decreases with every fulfilled request, and we assume that

the resource operation terminates. 'lherlcfore, the queue being served must emply, the

direction must change, and the other queue becomes the served queue. Another proof

of service can be based on never adding requests to a quetue at a priority number less

-186-

-. . .,..

than or equal to the lowest number request in the queue.21 We can still prove service

even if we allow a bounded number of requests to be added at a lower or equal number

priority.

8.2 Closing remarks

This thesis has presented a wide range of aspects of a single language

construct, including programming language design, formal specifications for

programming languages, and verification techniques. We were able to cope with such a

wide range because we were interested in limited techniques for a limited construct, and

our design philosophy emphasizes minimal interference between constructs. We

believe that our results show that such an approach has merit.

In several places we have mentioned that it is possible to view serializer

operations either as procedures or as message handlers. This flexibility is made possible

through the design of the serializer construct, and through the use of a semantic model

that is limited to describing serializers. Even though details may change as serializers

are embedded in a procedure-oriented or a message-passing language, the basic

approach to proving serializers should remain sound.

21. "Ibi is ithe approach fiat I Marc takes in II boarc 741.

19W7-

We have only attempted to verify automatically a number of variants of the

readers-writers problem. Partially due to this limitation we have been able to handle

several important specifications regarding concurrency control. Even though the

specification categories have been chosen for use with access to resources, properties

such as exclusion, priority, and termination are generally recognized as important in

dealing with concurrent programs.

We have demonstrated the feasibility of proving a form of termination that is

applicable to transactions. rather than programs or objects. This technique is especially

useful when resources (or objects in general) have unbounded lifetimes and the number

of active transactions (or processes) is unbounded.

Our approach to verification has not been oriented toward presenting either a

minimal or a complete set of axioms and inference rules. Rather, we have identified

some higher-level theorems, expressed as inference rules, that are useful in proving

serializers, and have justified these theorems by direct appeal to the semantic model.

Should further examples identify other useful theorems, more justification through the

model is called for. While the study of the completeness of an axiom system is

intersting in its own right, it is rare for a verifier (either autonIatic or manual) to appeal

to the axions if more general and more powerful theorems are known. 'llhe test we

value most for such a selection of theorems is their utility in verification, a test that our

theorems have passed.

- 188-

*"

Bibliography

Atkinson 76
R. Atkinson, Optimization Techniques for a Structured Programming Language,
S.M thesis, Massachusetts Institute of Technology, May 1976.

Baker 78
H. Baker, Actor Systems for Real-Time Computation, M.I.T. Laboratory for
Computer Science TR 197 (Ph.D. thesis), March 1978.

Bloom 79
T. Bloom, Synchronization Mechanisms for Modular Programming Languages,
S.M. Thesis, Massachusetts Institute of Technology, January 1979.

Boyer and Moore 75
R. Boyer, J. Moore, Proving Theorems About LISP Programs, JACM, vol. 22,
January 1974, 129-144.

Campbell and Habermann 74
R. Campbell, A. Habermann, The Specification of Process Synchronization by
Path Expressions, Lecture Notes in Computer Science 16, Springer-Verlag 1974,
89-102.

Courtois, Heymans and Parnas 71
P. Courtois, F. Heymans, D. Parnas, Concurrent Control with Readers and
Writers, CACM 14, 10, October 1971, 667-668.

Dahli 72
0. Dahl, Hierarchical Program Structures, Structured Programning, Acadcmic
Press, New York, 1972.

Deutsch 73
P. Deutsch, An Interactive Program Verifier, Ph.D. thesis, University of
California at Berkely, Berkeley CA, 1973.

- 189-

• ' , i o, .• • -

Dijkstra 68
E. Dijkstra, Cooperating Sequential Processes, Programming Languages,
Academic Press, New York, 1968.

Dijkstra 71
E. Dijkstra, Hierarchical Ordering of Sequential Processes, Acta Informatica, vol.
1, 1971, 115-138.

Dijkstra 75
E. Dijkstra, Guarded Commands, Nondeterminacy, and Formal Derivation of
Programs. CACM 18, 8, August 1975, 453-457.

Eswaren et. al. 76
K. Eswaren, J. Gray, R. Lorie, 1. Traiger, The Notion of Consistency and
Predicate Locks in a Database System, CACM 19, 11, November 1976, 624-633.

Feldman 79
J. Feldman, High Level Programming for Distributed Computing, CACM 22, 6,
June 1979, 353-367.

Good, London and Bledsoe 75
D. Good, R. London, W. Bledsoe, An Interactive Program Verification System,
Proceedings of tile International Conference on Reliable Software, Los Angeles
CA, April 1975, 482-492.

Good, Cohen and Keeton-Williams 79

D. Good, R. Cohen, J. Keeton-Williams, Principles of Proving Concurrent
Programs in Gypsy, Sixth ACM Symposium on Principles of Programming
Languages, San Antonio,,January 1979, 42-52.

Greifand Hewitt 75
I. Greif, C. Hewitt, Actor Semantics of PIANNFR-73, Proceedings of ACM
SIG PIAN-SIGACI' Con fcrncc, Palo Alto CA, January 1975.

Greif75
I. Greif, Semantics of Communicating Parallel Processes, M.A.T. Iaboratory for
Computer Science 'IR 154 (Ph.D. thesis), September 1975.

L

-19{)-
L

MaoI"
64.

Guttag, Horowitz and Musser 78
J. Guttag, E. Horowitz, D. Musser, Abstract Data Types and Software
Validation, CACM 21, 12, December 1978, 1048-1064.

Brinch Hansen 72
P. Brinch Hansen, Structured multiprogramming, CACM 15, 7, July 1972,
574-577.

Brinch Hansen 78
P. Brinch Hansen, Distributed Processes: A Concurrent Programming Concept,
CACM 21, 11, November 1978, 934-941.

Hewitt and Atkinson 77
C. Hewitt, R. Atkinson, Synchronization in Actor Systems, Fourth ACM
Symposium on Principles of Programming Languages, Los Angeles, January
1977, 267-280.

Hewitt and Baker 77
C. Hewitt, H. Baker, Actors and Continuous Functionals, M.I.T. Laboratory for
Computer Science TR 194, December 1977.

Hewitt, Attardi, and Lieberman 79
C. Hewitt, G. Attardi, H. Lieberman, Specifying and Proving Properties of
Guardians for Distributed Systems, A. I. Memo 505, M.I.T. Artificial
Intelligence Laboratory, June 1979.

Hewitt and Atkinson 79
C. Hewitt, R. Atkinson, Specification and Proof Tcchniques for Serializers, I EEE
Transactions on Software Engineering, January 1979, 10-23.

FHoare 74
C. Hoare, Monitors: An Operating System Structuring Concept, CACM 17, 10,
October 1974, 549-557.

Hoare 78
C. Hoare, Communicating Sequential Processes, CACM 21, 8, August 1978,
666-677.

- 191 -

XJ

Howard 76
J. Howard, Proving Monitors, CACM 19, 5, May 1976.

Ingalls 78
1D. Ingalls, The Smalhtalk-76 Programming System Design and Implementation,
Fifth ACM Symposium on Principles of Programming Languages, Tucson,
January 1978, 9-15.

IgUrashi, London, and -Luckham 72
S. Iguirashi, R. London, D. Luckham, Automatic Program Verification,
AIM-200, Stanford Artificial Intelligence Project, Stanford University, Stanford
CA, 1974.

Lam port 80
L. Lamnport, "Sometime" is sometimes "not never" - On the temporal logic of
programs, S, venth ACM Symposium on Principles of Programming Languages,
Las Vegas, January 1980, 174-185.

Lanipson and Redell 79
B. Lanipson, 1). RedelI, Experience with monitors and processes in Mesa,
CACM 22, 2, February 1980.

Laventhal 78
M. Laventhal, Synthesis of Synchronization Code for Data Abstractions, M.I.T
Laboratory for Computer Science TR 203 (Ph.D). thesis), June 1978.

* Liskov et. al. 77
B. Liskov, A. Snyder, R. Atkinson, C. Schaffert, Abstraction Mechanisms in
CLU, CACM 20, 8, August 1977, 564-576.

Liskov 79
H. Liskov, Primitives Ibr [Distributed Compuiting, Computation Structures
Group Memo 175. MaSSach uSCits Instittet Of leClinology I ahboratory b'r
Computer Science, May 1979.

ll1skov 79a
B. I iskov, R. Atkinson,T'. Bloom, F. Moss, C. Schaffert, BI. Sclicifler, A. Snyder.
CI U Reference Manual. M .1.T. Laboratory for Comnpu ter Science 'I R 225,
October 1979.

-192-

Metcalfe and Boggs 76
R. Metcalfe, D Boggs, Ethernet: Distributed Packet Switching for Local
Computer Networks, CACM 19, 7, July 1976, 395-404.

Morris 74
J. Morris, Towards More Flexible Systems, Lecture Notes in Computer Science
19, Springer-Verlag, 377-383, 1974.

Owicki 75
S. Owicki, Axiomatic Proof Techniques for Parallel Programs, Ph. D. thesis,
Department of Computer Science, Cornell University, Cornell NY, July 1975.

Owicki and Gries 76
S. Owicki, D. Gries, Verifying Properties of Parallel Programs: An Axiomatic
Approach, CACM 19, 5, May 1976, 279-285.

Reed 78
D. Reed, Naming and Synchronization in a Decentralized Computer System,
M.I.T. Laboratory for Computer Science TR 205 (Ph.D. thesis), September 1978.

Scott and Strachey 71
1). Scott and C. Strachey, Toward a Mathematical Semantics for CAmputer
Languages, Proceedings of the Symposium on Computers and Automata,
Polytechnic Institute of Brooklyn, 1971.

Strachey and Wadsworth 74
C. Strachey and C. Wadsworth, Continuations - A Mathemalical Semantics for
Handling Full Jumps, TcChnical Monograph PRG-11, Oxford Universit.
Computing ILaboratory, Programming Research Group, 1974.

Scheifler77

R. Schcinter, An Analysis of Inline Substittution for a Structu red Programming
Language, CACM 20, 9, Scptcmbcr 1977, W47-654.

Suzuki 74
N. Stutki, Veilfication of Proganis by Algebraic and Logical Reduction.
AIM-255, Stanlird Artilicial Intelligence Project, Stanford Uinivcrsity, StantIOrd
CA, 1974.

- 193-

-'t' •

AD-AOBZ 885 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE-ETC F/6 9/2
AUTOMATIC VERIFICATION OF SERIALIZERS.(UI
MAR So R ATKINSON N0001-75-C-0661

UNCLASSIFIED UIT/LCS/TR-229 ML

M EIJ h mu

1.011 -25 IL 1112

44

MICROCOPY RESOLUTION TEST CH.&T

NATIONAL BUREAU OF STANDARDS-1963- '

Svobodova, Liskov and Clark 79
L. Svobodova, B. Liskov, D. Clark, Distributed Computer Systems: Structure
and Semantics, M.I.T. Laboratory for Computer Science TR 215, March 1979.

Waldinger and Levitt 74
R. Waldinger, K. Levitt, Reasoning About Programs, Artificial Intelligence 5,3,
Fall 1974, 235-316.

Wegbreit and Spitzen 76
B. Wegbreit, J. Spitzen, Proving properties of complex structures, JACM 23, 2,
April 1976, 389-396.

Wulf 78
W. Wulf, et. at., An Informal Definition of Alphard (preliminary),
Carnegie-Mellon University, Computer Science Department, Report
CMU-CS-78-105, Pittsburgh PA, February 1978.

Yonezawa 77
A. Yonezawa, Specification and Verification Techniques for Parallel Programs
Based on Message Passing Semantics, M.I.T. Laboratory for Computer Science
TR 203 (Ph.D. thesis), December 1977.

,-

-194-

Appendix I - Bounded buffer serializer

A bounded buffer is intended to smooth variations in processing speed

between a producer and a consumer of items of information, and thereby afford more

concurrency between the two processes.22 A bounded buffer is accessed by get and put

operations, where the Nth get operation retrieves the information that the Nth put

operation deposited. A bounded buffer object is constructed by calling the create

operation with a positive number specifying the number of items of information to

buffer. The buffered information is transferred by copying the contents (via

item$move) from one item to another. We assume that this copying takes some

significant amount of time.23 Partial specifications for this problem appear in Chapter

4.

The bounded_buffer serializer given below uses only slight extensions over

serializers. We assume that performing a put operation on a full buffer causes an

exception to be signalled for the data abstraction (called bbuf in this example), but that

the serializer operation simply pauses until the buffer is not full. If several processes

perform get operations, there is no overlap between the operations, since a modification

to the buffer is made in the data abstraction, and the modifications made by two

invocations could conflict. A similar conflict arises for put operations.

22. A solution to this problem using monitors appears in jl-oarc 741. A verification of a similar monitor
appears in 1I loward 761.
23. AIihough such copying is nonnally foreign to CI U, we have used copying in an attempt to remain

comnparahle to the monitor staelmnent of the problem.

- 195 -

. _ .

The combined-boundedjbuffer serializer shown in Appendix II combines the

function of the boundedbuffer serializer and the bbuf cluster. The interface remains

the same, but the implementation does not use the bbuf cluster. Besides the obvious

savings afforded by the elimination of operation calls from the serializer to the cluster,

there is additional concurrency possible because get operations are allowed to overlap

with other get operations, and put operations are allowed to overlap with other put

operations.

We have presented this problem as an illustration of how the modularity

provided by serializers allows such optimization without changing the interface that the

user sees. Further, any verification of programs that use the bounded buffer serializer

remain valid, provided that they are unaffected by the additional concurrency.

1~

-t%-

% The bounded buffer serializer protects the bbuf abstraction
% against damaging concurrent access. Get and Put operations
% may only overlap with get size operations. All copying of
% item to item is done in the bbuf cluster.

bounded-buffer a serializer is

create, getsize, get, put

rep = struct[res: bbuf, c: crowd, max: int.
gq, pq: queue]

create - proc (n: int) returns (cvt) signals (bad-size)
return (rep${res: bbuf$create(n).

max: n,
c: crowd$createo.
gq, pq: queue$create())

resignal bad-size
end create

get_size = proc (x: cvt) returns (int)
return (x.res.size)
end get_size

get = proc (x: cvt, dst: item)
enqueue x.gq until crowd$empty(x.c) & x.res.size > 0
join x.c

bbuf$get(x.res, dst)
end

end get

put = proc (x: cvt, src: item)
enqueue x.pq until crowd$empty(x.c) & x.res.size <= x.max
join x.c

bbuf$put(x.res. src)
end

end put

end boundedbuffer

. .

-197

Appendix 1i- Combined bounded buffer serializer

% The combined bounded buffer permits get operations to overlap with1 % other get operations, and put operations to overlap with other put
% operations, but get and put operations cannot overlap. Get_size
% operations can overlap with either get or put operations.

combinedbounded buffer = serializer is
create, get_size, get, put

buf = array[item]
rep a struct[res: buf, gcpc: crowd,

next, size, max: int.
sq. gq, pq: queue]

create - proc (n: int) returns (cvt) signals (bad size)
if n < I then signal badsize end
return (rep${res: bufSfill copy(O, n, item$create()),

next: 1, size: 0, max: n.
gc. pc: crowdScreate(.
gq, pq, sq: queue$create())

end create

get size = proc (x: cvt) returns (int)
return (x.size)
end get-size

get a proc (x: cvt, dst: item)
enqueue x.gq until x.sze > 0 & crowd$empty(x.pc)
src: item := x.res[x.next]
x.size :a x.size - I
x.next := (x.next+1) // x.max % take increment mod N
Join x.gc

item$move(dst, src) % copy data from src to dst
end

end got

put - proc (x: cvt, src: item)
enqueue x.pq until crowdSempty(x.gc) & x.size <a x.max
dst: item :a x.res[(x.next+x.size) // x.max]
x.size :a x.size + I
join x.pc

itemSmove(dst, src)
end

end put

end combined bounded buffor

-198-

I

Appendix III - Disk head scheduler

In [Hoare 741, the disk head scheduler problem is discussed for monitor.

Below we give a serializer solution to the problem, which uses the priority-queue type.

A priority-queue is a queue where the order of dequeue events is dependent on the

priority. We will assume that the lowest numerical value of the priority is served before

any others. Equal priorities are served FIFO.

The algorithm used depends on having two queues, one which is served in

increasing order of disk address, called x.up-q; and one which is served in decreasing

order of disk address, called x.downq. Our algorithm works by adding requests to one

queue, and serving the other. We change direction whenever the queue for the current

direction is empty and the other queue is not empty.

M I

disk *Socializer is
create,
request

rep - record(increasing: bool,
upq, downq: priorityqueuO.
disk: _disk]

create m proc () returns (cvt)
return (reps(increasing: true.

upq, downq: priori tyqueueScreato().
disk: _disk~createO)))

and create

request - proc (d: cvt, address: it, kind: int, p: page)
signals (badaddress, diskerror)

if d.increasing
then enqueue d.down~q

until crowd~empty(d.c)
(-d.increasingI
priorityqueueSempty(d.upA)

priority address
d increasing :a false

else enqueue d.up..q
until crowd~empty(d.c)

(d.increasing I
priorityqueueSempty(d downjq))

priority -address
d.increasing :* true

end

join dCc
-diskSrequest(d.disk. address, kind, p)
end resignal bad-address, disk-error

end request

end disk

.2W0

Appendix IV - Table of definitions

Page Definition or rule name

56: Occurs
56: Precedes
56: Same-trans
57: Excludes
57: Excludes-node
57: Nodeexcludesnode
58: Last
58: Front
.58: Gains
58: Releases
59: Busy
59: Qsize
59: Csize
60: Rank

'1 60: Rank-scan
61: Eval
63: Legal
63: Legal-step
64: LegaLdequeue
64: Heaenqueue
64: nnqueue
65: ln_same-queue
65: Noneready
66: Legaltransaction-step
67: Complete
68: Gain_complete
68: Corresponding-release
68: Rclcase-follows
69: Join-complete
69: Leavejfollows

107: Transiction order rule
108: Transitivity rule
109: PX from gain rule
110: PX from PX rule

i-201-

III: Event before PX rule
112: Event after PX rule
112: GRE clause
112: GRE-def
113: GRE from empty rule
113: GRE from expression rule
114: GX from GRE rule
115: Event before GX rule
116: Event after GX rule
117: Event from FIFO rule
118: EVT and EVF meaning
119: EVF rule
119: EVT rule
120: EVT from conjunction rule
121: EVT from disjunction rule

121: EVF from conjunction rule
121: EVF from disjunction rule
122: Event from ready queue rule

20

II

jt Biographical Note

Russell Roger Atkinson

a: was born in New York City in 1950.

b: was raised in Fanwood, NJ.

c: received a B.S. degree in Physics from the University of illinois in 1972.

d: received a S.M. degree in Computer Science from M.I.T. in 1976, thesis title:

Optimizalion Techniques for a Structured Programming Language.

e: received a Ph.D. degree in Computer Science from M.I.T. in 1980, thesis title:

Auiomuic Verification of Serlalizers.

f: will be working at Xerox Palo Alto Research Center.

g: is interested in programming languages, optimization, verification, computer

architecture, and distributed systems.

h: all of the above.

Answer: h.

-203-4

OFFICIAL DISrBUTION LIST

Defense Technical Information Center Dr. A. L. Slafkosky
Cameron Station Scientific AdvisorAlexandria, VA 22314 Commandant of the Marine Corps

12 copies (Code RD-i)
ORshington, D. C. 20380

Office of Naval Research 1 copyInformation Systens Program
Code 437 Office of Naval Research
Arlington, VA 22217 Code 458

2 copies Arlington, VA 22217

* Office of Naval Research 1 copy
Branch Office/Boston Naval Ocean Systems Center,Code 91Building 114, Section D HeadquartersCcxputer Sciences &666 Smmner Street Simulation Department
Boston, MA 02210 San Diego, CA 92152

1 copy Mr. Lloyd Z. Maudlin

* Office of Naval Research 1 COW
Branch Office/Chicago Mr. E. H. Gleissner536 South Clark Street Naval Ship Research & Development CenterChicago, IL 60605 Ccmputation & Math Department

1 copy Bethesda, MD 20084
1 copyOffice of Naval Research

Branch Office/Pasadena Captain Grae M. Hopper, USNR
1030 East Green Street NAVDAC-OOHPasadena, CA 91106 Department of the Navy

I copy Washington, D. C. 20374

New York Area 1 copy
715 Broadway - 5th floor
New York, N. Y. 10003 Mr. Kin B. Thcmpson

1 copy Technical Director
Information Systems DivisionNaval Research Laboratory (OP-91T)Technical Information Division Office of Chief of Naval Operations

Code 2627 Washington, D. C. 20350
Washington, D. C. 20375 I copy

6 copies

Assistant Chief for Technology
Office of Naval Research

4 Code 200
Arlington, VA 22217

1 copy

Office of Naval Research
Code 455
Arlington, VA 22217

1 copy

iAJ .

